Cargando…
Review of Statistical Methods for Evaluating the Performance of Survival or Other Time-to-Event Prediction Models (from Conventional to Deep Learning Approaches)
The recent introduction of various high-dimensional modeling methods, such as radiomics and deep learning, has created a much greater diversity in modeling approaches for survival prediction (or, more generally, time-to-event prediction). The newness of the recent modeling approaches and unfamiliari...
Autores principales: | Park, Seo Young, Park, Ji Eun, Kim, Hyungjin, Park, Seong Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484151/ https://www.ncbi.nlm.nih.gov/pubmed/34269532 http://dx.doi.org/10.3348/kjr.2021.0223 |
Ejemplares similares
-
Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statistical Perspectives
por: Park, Ji Eun, et al.
Publicado: (2019) -
An Open Medical Platform to Share Source Code and Various Pre-Trained Weights for Models to Use in Deep Learning Research
por: Kim, Sungchul, et al.
Publicado: (2021) -
Statistical and machine learning methods for immunoprofiling based on single-cell data
por: Zhang, Jingxuan, et al.
Publicado: (2023) -
Basics of Deep Learning: A Radiologist's Guide to Understanding Published Radiology Articles on Deep Learning
por: Do, Synho, et al.
Publicado: (2020) -
Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance
por: Oh, Jang-Hoon, et al.
Publicado: (2023)