Cargando…

Assessment of intercontinents mutation hotspots and conserved domains within SARS-CoV-2 genome

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 pathogen, has led to waves of global pandemic claiming lives and posing a serious threat to public health and social cum physical interactions. To evaluate the mutational landscape and conserved regions in the genome of the causative pathogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Omotoso, Olabode E., Olugbami, Jeremiah O., Gbadegesin, Michael A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484233/
https://www.ncbi.nlm.nih.gov/pubmed/34606987
http://dx.doi.org/10.1016/j.meegid.2021.105097
Descripción
Sumario:Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 pathogen, has led to waves of global pandemic claiming lives and posing a serious threat to public health and social cum physical interactions. To evaluate the mutational landscape and conserved regions in the genome of the causative pathogen, we analysed 7213 complete SARS-CoV-2 protein sequences mined from the Global Initiative on Sharing All Influenza Data (GISAID) repository from infected patients across all regions on the EpiCov web interface. Regions of origin and the corresponding number of sequences mined are as follows: Asia – 2487; Oceania – 2027; Europe – 1240; Africa – 717; South America – 391; and North America – 351. High recurrent mutations, namely: T265I in non-structural protein 2 (nsp2), L3606F in nsp6, P4715L in RNA-dependent RNA polymerase (RdRp), D614G in spike glycoprotein, R203K and G204R in nucleocapsid phosphoprotein and Q57H in ORF3a with well-conserved envelope and membrane proteins, 3CLpro and spike S2 domains across regions were observed. Comparative analyses of the viral sequences reveal the prevalence P4715L and D614G mutations as the most recurrent and concurrent in Africa (97.20%), Europe (89.83%) and moderately in Asia (61.60%). Mutation rates are central to viral transmissibility, evolution and virulence, which help them to invade host immunity and develop drug resistance. Based on the foregoing, it is important to understand the mutational spectra of SARS-CoV-2 genome across regions. This will help in identifying specific genomic sites as potential targets for drug design and vaccine development, monitoring the spread of the virus and unraveling its evolution, virulence and transmissibility.