Cargando…

A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries

The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising o...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Junru, Wang, Xianshu, Liu, Qi, Wang, Shuwei, Zhou, Dong, Kang, Feiyu, Shanmukaraj, Devaraj, Armand, Michel, Rojo, Teofilo, Li, Baohua, Wang, Guoxiu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484457/
https://www.ncbi.nlm.nih.gov/pubmed/34593799
http://dx.doi.org/10.1038/s41467-021-26073-6
_version_ 1784577322161012736
author Wu, Junru
Wang, Xianshu
Liu, Qi
Wang, Shuwei
Zhou, Dong
Kang, Feiyu
Shanmukaraj, Devaraj
Armand, Michel
Rojo, Teofilo
Li, Baohua
Wang, Guoxiu
author_facet Wu, Junru
Wang, Xianshu
Liu, Qi
Wang, Shuwei
Zhou, Dong
Kang, Feiyu
Shanmukaraj, Devaraj
Armand, Michel
Rojo, Teofilo
Li, Baohua
Wang, Guoxiu
author_sort Wu, Junru
collection PubMed
description The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising of a Li-rich oxide active material and graphite conductive agent to produce a high-energy “shuttle-relay” Li metal battery, where additional capacity is generated from the electrolyte’s anion shuttling at high voltages. The gel polymer electrolyte, prepared via in situ polymerization in an all-fluorinated electrolyte, shows adequate ionic conductivity (around 2 mS cm(−1) at 25 °C), oxidation stability (up to 5.5 V vs Li/Li(+)), compatibility with Li metal and safety aspects (i.e., non-flammability). The polymeric electrolyte allows for a reversible insertion of hexafluorophosphate anions into the conductive graphite (i.e., dual-ion mechanism) after the removal of Li ions from Li-rich oxide (i.e., rocking-chair mechanism).
format Online
Article
Text
id pubmed-8484457
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84844572021-10-22 A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries Wu, Junru Wang, Xianshu Liu, Qi Wang, Shuwei Zhou, Dong Kang, Feiyu Shanmukaraj, Devaraj Armand, Michel Rojo, Teofilo Li, Baohua Wang, Guoxiu Nat Commun Article The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising of a Li-rich oxide active material and graphite conductive agent to produce a high-energy “shuttle-relay” Li metal battery, where additional capacity is generated from the electrolyte’s anion shuttling at high voltages. The gel polymer electrolyte, prepared via in situ polymerization in an all-fluorinated electrolyte, shows adequate ionic conductivity (around 2 mS cm(−1) at 25 °C), oxidation stability (up to 5.5 V vs Li/Li(+)), compatibility with Li metal and safety aspects (i.e., non-flammability). The polymeric electrolyte allows for a reversible insertion of hexafluorophosphate anions into the conductive graphite (i.e., dual-ion mechanism) after the removal of Li ions from Li-rich oxide (i.e., rocking-chair mechanism). Nature Publishing Group UK 2021-09-30 /pmc/articles/PMC8484457/ /pubmed/34593799 http://dx.doi.org/10.1038/s41467-021-26073-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wu, Junru
Wang, Xianshu
Liu, Qi
Wang, Shuwei
Zhou, Dong
Kang, Feiyu
Shanmukaraj, Devaraj
Armand, Michel
Rojo, Teofilo
Li, Baohua
Wang, Guoxiu
A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries
title A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries
title_full A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries
title_fullStr A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries
title_full_unstemmed A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries
title_short A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries
title_sort synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484457/
https://www.ncbi.nlm.nih.gov/pubmed/34593799
http://dx.doi.org/10.1038/s41467-021-26073-6
work_keys_str_mv AT wujunru asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT wangxianshu asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT liuqi asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT wangshuwei asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT zhoudong asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT kangfeiyu asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT shanmukarajdevaraj asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT armandmichel asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT rojoteofilo asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT libaohua asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT wangguoxiu asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT wujunru synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT wangxianshu synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT liuqi synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT wangshuwei synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT zhoudong synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT kangfeiyu synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT shanmukarajdevaraj synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT armandmichel synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT rojoteofilo synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT libaohua synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries
AT wangguoxiu synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries