Cargando…
A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries
The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising o...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484457/ https://www.ncbi.nlm.nih.gov/pubmed/34593799 http://dx.doi.org/10.1038/s41467-021-26073-6 |
_version_ | 1784577322161012736 |
---|---|
author | Wu, Junru Wang, Xianshu Liu, Qi Wang, Shuwei Zhou, Dong Kang, Feiyu Shanmukaraj, Devaraj Armand, Michel Rojo, Teofilo Li, Baohua Wang, Guoxiu |
author_facet | Wu, Junru Wang, Xianshu Liu, Qi Wang, Shuwei Zhou, Dong Kang, Feiyu Shanmukaraj, Devaraj Armand, Michel Rojo, Teofilo Li, Baohua Wang, Guoxiu |
author_sort | Wu, Junru |
collection | PubMed |
description | The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising of a Li-rich oxide active material and graphite conductive agent to produce a high-energy “shuttle-relay” Li metal battery, where additional capacity is generated from the electrolyte’s anion shuttling at high voltages. The gel polymer electrolyte, prepared via in situ polymerization in an all-fluorinated electrolyte, shows adequate ionic conductivity (around 2 mS cm(−1) at 25 °C), oxidation stability (up to 5.5 V vs Li/Li(+)), compatibility with Li metal and safety aspects (i.e., non-flammability). The polymeric electrolyte allows for a reversible insertion of hexafluorophosphate anions into the conductive graphite (i.e., dual-ion mechanism) after the removal of Li ions from Li-rich oxide (i.e., rocking-chair mechanism). |
format | Online Article Text |
id | pubmed-8484457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-84844572021-10-22 A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries Wu, Junru Wang, Xianshu Liu, Qi Wang, Shuwei Zhou, Dong Kang, Feiyu Shanmukaraj, Devaraj Armand, Michel Rojo, Teofilo Li, Baohua Wang, Guoxiu Nat Commun Article The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising of a Li-rich oxide active material and graphite conductive agent to produce a high-energy “shuttle-relay” Li metal battery, where additional capacity is generated from the electrolyte’s anion shuttling at high voltages. The gel polymer electrolyte, prepared via in situ polymerization in an all-fluorinated electrolyte, shows adequate ionic conductivity (around 2 mS cm(−1) at 25 °C), oxidation stability (up to 5.5 V vs Li/Li(+)), compatibility with Li metal and safety aspects (i.e., non-flammability). The polymeric electrolyte allows for a reversible insertion of hexafluorophosphate anions into the conductive graphite (i.e., dual-ion mechanism) after the removal of Li ions from Li-rich oxide (i.e., rocking-chair mechanism). Nature Publishing Group UK 2021-09-30 /pmc/articles/PMC8484457/ /pubmed/34593799 http://dx.doi.org/10.1038/s41467-021-26073-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Wu, Junru Wang, Xianshu Liu, Qi Wang, Shuwei Zhou, Dong Kang, Feiyu Shanmukaraj, Devaraj Armand, Michel Rojo, Teofilo Li, Baohua Wang, Guoxiu A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries |
title | A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries |
title_full | A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries |
title_fullStr | A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries |
title_full_unstemmed | A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries |
title_short | A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries |
title_sort | synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484457/ https://www.ncbi.nlm.nih.gov/pubmed/34593799 http://dx.doi.org/10.1038/s41467-021-26073-6 |
work_keys_str_mv | AT wujunru asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT wangxianshu asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT liuqi asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT wangshuwei asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT zhoudong asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT kangfeiyu asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT shanmukarajdevaraj asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT armandmichel asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT rojoteofilo asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT libaohua asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT wangguoxiu asynergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT wujunru synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT wangxianshu synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT liuqi synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT wangshuwei synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT zhoudong synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT kangfeiyu synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT shanmukarajdevaraj synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT armandmichel synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT rojoteofilo synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT libaohua synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries AT wangguoxiu synergisticexploitationtoproducehighvoltagequasisolidstatelithiummetalbatteries |