Cargando…
New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images
This article addresses a new method for the classification of white blood cells (WBCs) using image processing techniques and machine learning methods. The proposed method consists of three steps: detecting the nucleus and cytoplasm, extracting features, and classification. At first, a new algorithm...
Autores principales: | Tavakoli, Sajad, Ghaffari, Ali, Kouzehkanan, Zahra Mousavi, Hosseini, Reshad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484470/ https://www.ncbi.nlm.nih.gov/pubmed/34593873 http://dx.doi.org/10.1038/s41598-021-98599-0 |
Ejemplares similares
-
A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm
por: Kouzehkanan, Zahra Mousavi, et al.
Publicado: (2022) -
Isolation and two-step classification of normal white blood cells in peripheral blood smears
por: Ramesh, Nisha, et al.
Publicado: (2012) -
An Automated Segmentation of Leukocytes Using Modified Watershed Algorithm on Peripheral Blood Smear Images
por: Abrol, Vipasha, et al.
Publicado: (2023) -
Extraction of Nucleolus Candidate Zone in White Blood Cells of Peripheral Blood Smear Images Using Curvelet Transform
por: Soltanzadeh, Ramin, et al.
Publicado: (2012) -
Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis
por: Kaza, Nischita, et al.
Publicado: (2022)