Cargando…
RapidEELS: machine learning for denoising and classification in rapid acquisition electron energy loss spectroscopy
Recent advances in detectors for imaging and spectroscopy have afforded in situ, rapid acquisition of hyperspectral data. While electron energy loss spectroscopy (EELS) data acquisition speeds with electron counting are regularly reaching 400 frames per second with near-zero read noise, signal to no...
Autores principales: | Pate, Cassandra M., Hart, James L., Taheri, Mitra L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484590/ https://www.ncbi.nlm.nih.gov/pubmed/34593833 http://dx.doi.org/10.1038/s41598-021-97668-8 |
Ejemplares similares
-
Rapid and Green Classification Method of Bacteria Using Machine Learning and NIR Spectroscopy
por: Farias, Leovergildo R., et al.
Publicado: (2023) -
Rapid Classification of Petroleum Waxes: A Vis-NIR Spectroscopy and Machine Learning Approach
por: Barea-Sepúlveda, Marta, et al.
Publicado: (2023) -
Rapid, Reference-Free human genotype imputation with denoising autoencoders
por: Dias, Raquel, et al.
Publicado: (2022) -
Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity
por: Hart, James L., et al.
Publicado: (2017) -
Rapid denoising of pyrosequencing amplicon data: exploiting the rank-abundance distribution
por: Reeder, Jens, et al.
Publicado: (2010)