Cargando…

Large‐scale evolution of body temperatures in land vertebrates

Body temperature is a crucial variable in animals that affects nearly every aspect of their lives. Here we analyze for the first time largescale patterns in the evolution of body temperatures across terrestrial vertebrates (tetrapods: including amphibians, mammals, birds and other reptiles). Despite...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreira, Matthew O., Qu, Yan‐Fu, Wiens, John J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484719/
https://www.ncbi.nlm.nih.gov/pubmed/34621535
http://dx.doi.org/10.1002/evl3.249
Descripción
Sumario:Body temperature is a crucial variable in animals that affects nearly every aspect of their lives. Here we analyze for the first time largescale patterns in the evolution of body temperatures across terrestrial vertebrates (tetrapods: including amphibians, mammals, birds and other reptiles). Despite the traditional view that endotherms (birds and mammals) have higher body temperatures than ectotherms, we find they are not significantly different. However, rates of body‐temperature evolution are significantly different, with lower rates in endotherms than ectotherms, and the highest rates in amphibians. We find that body temperatures show strong phylogenetic signal and conservatism over 350 million years of evolutionary history in tetrapods, and some lineages appear to have retained similar body temperatures over time for hundreds of millions of years. Although body temperatures are often unrelated to climate in tetrapods, we find that body temperatures are significantly related to day‐night activity patterns. Specifically, body temperatures are generally higher in diurnal species than nocturnal species, both across ectotherms and, surprisingly, across endotherms also. Overall, our results suggest that body temperatures are significantly linked to phylogeny and diel‐activity patterns within and among tetrapod groups, rather than just climate and the endotherm‐ectotherm divide.