Cargando…
High Throughput Transcriptome Data Analysis and Computational Verification Reveal Immunotherapy Biomarkers of Compound Kushen Injection for Treating Triple-Negative Breast Cancer
BACKGROUND: Although notable therapeutic and prognostic benefits of compound kushen injection (CKI) have been found when it was used alone or in combination with chemotherapy or radiotherapy for triple-negative breast cancer (TNBC) treatment, the effects of CKI on TNBC microenvironment remain largel...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484800/ https://www.ncbi.nlm.nih.gov/pubmed/34604090 http://dx.doi.org/10.3389/fonc.2021.747300 |
_version_ | 1784577397314551808 |
---|---|
author | Liu, Xinkui Wu, Yang Zhang, Yingying Bu, Dechao Wu, Chao Lu, Shan Huang, Zhihong Song, Yurong Zhao, Yi Guo, Fengying Ye, Peizhi Fu, Changgeng Shen, Liangliang Zhang, Jingyuan Wang, Haojia Duan, Xianchun Wu, Jiarui |
author_facet | Liu, Xinkui Wu, Yang Zhang, Yingying Bu, Dechao Wu, Chao Lu, Shan Huang, Zhihong Song, Yurong Zhao, Yi Guo, Fengying Ye, Peizhi Fu, Changgeng Shen, Liangliang Zhang, Jingyuan Wang, Haojia Duan, Xianchun Wu, Jiarui |
author_sort | Liu, Xinkui |
collection | PubMed |
description | BACKGROUND: Although notable therapeutic and prognostic benefits of compound kushen injection (CKI) have been found when it was used alone or in combination with chemotherapy or radiotherapy for triple-negative breast cancer (TNBC) treatment, the effects of CKI on TNBC microenvironment remain largely unclear. This study aims to construct and validate a predictive immunotherapy signature of CKI on TNBC. METHODS: The UPLC-Q-TOF-MS technology was firstly used to investigate major constituents of CKI. RNA sequencing data of CKI-perturbed TNBC cells were analyzed to detect differential expression genes (DEGs), and the GSVA algorithm was applied to explore significantly changed pathways regulated by CKI. Additionally, the ssGSEA algorithm was used to quantify immune cell abundance in TNBC patients, and these patients were classified into distinct immune infiltration subgroups by unsupervised clustering. Then, prognosis-related genes were screened from DEGs among these subgroups and were further overlapped with the DEGs regulated by CKI. Finally, a predictive immunotherapy signature of CKI on TNBC was constructed based on the LASSO regression algorithm to predict mortality risks of TNBC patients, and the signature was also validated in another TNBC cohort. RESULTS: Twenty-three chemical components in CKI were identified by UPLC-Q-TOF-MS analysis. A total of 3692 DEGs were detected in CKI-treated versus control groups, and CKI significantly activated biological processes associated with activation of T, natural killer and natural killer T cells. Three immune cell infiltration subgroups with 1593 DEGs were identified in TNBC patients. Then, two genes that can be down-regulated by CKI with hazard ratio (HR) > 1 and 26 genes that can be up-regulated by CKI with HR < 1 were selected as key immune- and prognosis-related genes regulated by CKI. Lastly, a five-gene prognostic signature comprising two risky genes (MARVELD2 and DYNC2I2) that can be down-regulated by CKI and three protective genes (RASSF2, FERMT3 and RASSF5) that can be up-regulated by CKI was developed, and it showed a good performance in both training and test sets. CONCLUSIONS: This study proposes a predictive immunotherapy signature of CKI on TNBC, which would provide more evidence for survival prediction and treatment guidance in TNBC as well as a paradigm for exploring immunotherapy biomarkers in compound medicines. |
format | Online Article Text |
id | pubmed-8484800 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84848002021-10-02 High Throughput Transcriptome Data Analysis and Computational Verification Reveal Immunotherapy Biomarkers of Compound Kushen Injection for Treating Triple-Negative Breast Cancer Liu, Xinkui Wu, Yang Zhang, Yingying Bu, Dechao Wu, Chao Lu, Shan Huang, Zhihong Song, Yurong Zhao, Yi Guo, Fengying Ye, Peizhi Fu, Changgeng Shen, Liangliang Zhang, Jingyuan Wang, Haojia Duan, Xianchun Wu, Jiarui Front Oncol Oncology BACKGROUND: Although notable therapeutic and prognostic benefits of compound kushen injection (CKI) have been found when it was used alone or in combination with chemotherapy or radiotherapy for triple-negative breast cancer (TNBC) treatment, the effects of CKI on TNBC microenvironment remain largely unclear. This study aims to construct and validate a predictive immunotherapy signature of CKI on TNBC. METHODS: The UPLC-Q-TOF-MS technology was firstly used to investigate major constituents of CKI. RNA sequencing data of CKI-perturbed TNBC cells were analyzed to detect differential expression genes (DEGs), and the GSVA algorithm was applied to explore significantly changed pathways regulated by CKI. Additionally, the ssGSEA algorithm was used to quantify immune cell abundance in TNBC patients, and these patients were classified into distinct immune infiltration subgroups by unsupervised clustering. Then, prognosis-related genes were screened from DEGs among these subgroups and were further overlapped with the DEGs regulated by CKI. Finally, a predictive immunotherapy signature of CKI on TNBC was constructed based on the LASSO regression algorithm to predict mortality risks of TNBC patients, and the signature was also validated in another TNBC cohort. RESULTS: Twenty-three chemical components in CKI were identified by UPLC-Q-TOF-MS analysis. A total of 3692 DEGs were detected in CKI-treated versus control groups, and CKI significantly activated biological processes associated with activation of T, natural killer and natural killer T cells. Three immune cell infiltration subgroups with 1593 DEGs were identified in TNBC patients. Then, two genes that can be down-regulated by CKI with hazard ratio (HR) > 1 and 26 genes that can be up-regulated by CKI with HR < 1 were selected as key immune- and prognosis-related genes regulated by CKI. Lastly, a five-gene prognostic signature comprising two risky genes (MARVELD2 and DYNC2I2) that can be down-regulated by CKI and three protective genes (RASSF2, FERMT3 and RASSF5) that can be up-regulated by CKI was developed, and it showed a good performance in both training and test sets. CONCLUSIONS: This study proposes a predictive immunotherapy signature of CKI on TNBC, which would provide more evidence for survival prediction and treatment guidance in TNBC as well as a paradigm for exploring immunotherapy biomarkers in compound medicines. Frontiers Media S.A. 2021-09-17 /pmc/articles/PMC8484800/ /pubmed/34604090 http://dx.doi.org/10.3389/fonc.2021.747300 Text en Copyright © 2021 Liu, Wu, Zhang, Bu, Wu, Lu, Huang, Song, Zhao, Guo, Ye, Fu, Shen, Zhang, Wang, Duan and Wu https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Liu, Xinkui Wu, Yang Zhang, Yingying Bu, Dechao Wu, Chao Lu, Shan Huang, Zhihong Song, Yurong Zhao, Yi Guo, Fengying Ye, Peizhi Fu, Changgeng Shen, Liangliang Zhang, Jingyuan Wang, Haojia Duan, Xianchun Wu, Jiarui High Throughput Transcriptome Data Analysis and Computational Verification Reveal Immunotherapy Biomarkers of Compound Kushen Injection for Treating Triple-Negative Breast Cancer |
title | High Throughput Transcriptome Data Analysis and Computational Verification Reveal Immunotherapy Biomarkers of Compound Kushen Injection for Treating Triple-Negative Breast Cancer |
title_full | High Throughput Transcriptome Data Analysis and Computational Verification Reveal Immunotherapy Biomarkers of Compound Kushen Injection for Treating Triple-Negative Breast Cancer |
title_fullStr | High Throughput Transcriptome Data Analysis and Computational Verification Reveal Immunotherapy Biomarkers of Compound Kushen Injection for Treating Triple-Negative Breast Cancer |
title_full_unstemmed | High Throughput Transcriptome Data Analysis and Computational Verification Reveal Immunotherapy Biomarkers of Compound Kushen Injection for Treating Triple-Negative Breast Cancer |
title_short | High Throughput Transcriptome Data Analysis and Computational Verification Reveal Immunotherapy Biomarkers of Compound Kushen Injection for Treating Triple-Negative Breast Cancer |
title_sort | high throughput transcriptome data analysis and computational verification reveal immunotherapy biomarkers of compound kushen injection for treating triple-negative breast cancer |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484800/ https://www.ncbi.nlm.nih.gov/pubmed/34604090 http://dx.doi.org/10.3389/fonc.2021.747300 |
work_keys_str_mv | AT liuxinkui highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT wuyang highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT zhangyingying highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT budechao highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT wuchao highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT lushan highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT huangzhihong highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT songyurong highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT zhaoyi highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT guofengying highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT yepeizhi highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT fuchanggeng highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT shenliangliang highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT zhangjingyuan highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT wanghaojia highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT duanxianchun highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer AT wujiarui highthroughputtranscriptomedataanalysisandcomputationalverificationrevealimmunotherapybiomarkersofcompoundkusheninjectionfortreatingtriplenegativebreastcancer |