Cargando…
System Inference Via Field Inversion for the Spatio-Temporal Progression of Infectious Diseases: Studies of COVID-19 in Michigan and Mexico
We present an approach to studying and predicting the spatio-temporal progression of infectious diseases. We treat the problem by adopting a partial differential equation (PDE) version of the Susceptible, Infected, Recovered, Deceased (SIRD) compartmental model of epidemiology, which is achieved by...
Autores principales: | Wang, Zhenlin, Carrasco-Teja, Mariana, Zhang, Xiaoxuan, Teichert, Gregory H., Garikipati, Krishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484856/ https://www.ncbi.nlm.nih.gov/pubmed/34611391 http://dx.doi.org/10.1007/s11831-021-09643-1 |
Ejemplares similares
-
System inference for the spatio-temporal evolution of infectious diseases: Michigan in the time of COVID-19
por: Wang, Z., et al.
Publicado: (2020) -
Correction to: System inference for the spatio-temporal evolution of infectious diseases: Michigan in the time of COVID-19
por: Wang, Z., et al.
Publicado: (2020) -
Spatio-Temporal Analysis of Infectious Diseases
por: López-Quílez, Antonio
Publicado: (2019) -
Spatio-temporal spread of infectious pathogens of humans
por: Arino, Julien
Publicado: (2017) -
Trajectory Modeling of Spatio-Temporal Trends in COVID-19 Incidence in Flint and Genesee County, Michigan
por: Wojciechowski, Thomas Walter, et al.
Publicado: (2022)