Cargando…
Dose–response functions and surrogate models for exploring social contagion in the Copenhagen Networks Study
Spreading dynamics and complex contagion processes on networks are important mechanisms underlying the emergence of critical transitions, tipping points and other non-linear phenomena in complex human and natural systems. Increasing amounts of temporal network data are now becoming available to stud...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484857/ https://www.ncbi.nlm.nih.gov/pubmed/34611486 http://dx.doi.org/10.1140/epjs/s11734-021-00279-7 |
_version_ | 1784577411038314496 |
---|---|
author | Donges, Jonathan F. Lochner, Jakob H. Kitzmann, Niklas H. Heitzig, Jobst Lehmann, Sune Wiedermann, Marc Vollmer, Jürgen |
author_facet | Donges, Jonathan F. Lochner, Jakob H. Kitzmann, Niklas H. Heitzig, Jobst Lehmann, Sune Wiedermann, Marc Vollmer, Jürgen |
author_sort | Donges, Jonathan F. |
collection | PubMed |
description | Spreading dynamics and complex contagion processes on networks are important mechanisms underlying the emergence of critical transitions, tipping points and other non-linear phenomena in complex human and natural systems. Increasing amounts of temporal network data are now becoming available to study such spreading processes of behaviours, opinions, ideas, diseases and innovations to test hypotheses regarding their specific properties. To this end, we here present a methodology based on dose–response functions and hypothesis testing using surrogate data models that randomise most aspects of the empirical data while conserving certain structures relevant to contagion, group or homophily dynamics. We demonstrate this methodology for synthetic temporal network data of spreading processes generated by the adaptive voter model. Furthermore, we apply it to empirical temporal network data from the Copenhagen Networks Study. This data set provides a physically-close-contact network between several hundreds of university students participating in the study over the course of 3 months. We study the potential spreading dynamics of the health-related behaviour “regularly going to the fitness studio” on this network. Based on a hierarchy of surrogate data models, we find that our method neither provides significant evidence for an influence of a dose–response-type network spreading process in this data set, nor significant evidence for homophily. The empirical dynamics in exercise behaviour are likely better described by individual features such as the disposition towards the behaviour, and the persistence to maintain it, as well as external influences affecting the whole group, and the non-trivial network structure. The proposed methodology is generic and promising also for applications to other temporal network data sets and traits of interest. |
format | Online Article Text |
id | pubmed-8484857 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-84848572021-10-01 Dose–response functions and surrogate models for exploring social contagion in the Copenhagen Networks Study Donges, Jonathan F. Lochner, Jakob H. Kitzmann, Niklas H. Heitzig, Jobst Lehmann, Sune Wiedermann, Marc Vollmer, Jürgen Eur Phys J Spec Top Regular Article Spreading dynamics and complex contagion processes on networks are important mechanisms underlying the emergence of critical transitions, tipping points and other non-linear phenomena in complex human and natural systems. Increasing amounts of temporal network data are now becoming available to study such spreading processes of behaviours, opinions, ideas, diseases and innovations to test hypotheses regarding their specific properties. To this end, we here present a methodology based on dose–response functions and hypothesis testing using surrogate data models that randomise most aspects of the empirical data while conserving certain structures relevant to contagion, group or homophily dynamics. We demonstrate this methodology for synthetic temporal network data of spreading processes generated by the adaptive voter model. Furthermore, we apply it to empirical temporal network data from the Copenhagen Networks Study. This data set provides a physically-close-contact network between several hundreds of university students participating in the study over the course of 3 months. We study the potential spreading dynamics of the health-related behaviour “regularly going to the fitness studio” on this network. Based on a hierarchy of surrogate data models, we find that our method neither provides significant evidence for an influence of a dose–response-type network spreading process in this data set, nor significant evidence for homophily. The empirical dynamics in exercise behaviour are likely better described by individual features such as the disposition towards the behaviour, and the persistence to maintain it, as well as external influences affecting the whole group, and the non-trivial network structure. The proposed methodology is generic and promising also for applications to other temporal network data sets and traits of interest. Springer Berlin Heidelberg 2021-10-01 2021 /pmc/articles/PMC8484857/ /pubmed/34611486 http://dx.doi.org/10.1140/epjs/s11734-021-00279-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Regular Article Donges, Jonathan F. Lochner, Jakob H. Kitzmann, Niklas H. Heitzig, Jobst Lehmann, Sune Wiedermann, Marc Vollmer, Jürgen Dose–response functions and surrogate models for exploring social contagion in the Copenhagen Networks Study |
title | Dose–response functions and surrogate models for exploring social contagion in the Copenhagen Networks Study |
title_full | Dose–response functions and surrogate models for exploring social contagion in the Copenhagen Networks Study |
title_fullStr | Dose–response functions and surrogate models for exploring social contagion in the Copenhagen Networks Study |
title_full_unstemmed | Dose–response functions and surrogate models for exploring social contagion in the Copenhagen Networks Study |
title_short | Dose–response functions and surrogate models for exploring social contagion in the Copenhagen Networks Study |
title_sort | dose–response functions and surrogate models for exploring social contagion in the copenhagen networks study |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484857/ https://www.ncbi.nlm.nih.gov/pubmed/34611486 http://dx.doi.org/10.1140/epjs/s11734-021-00279-7 |
work_keys_str_mv | AT dongesjonathanf doseresponsefunctionsandsurrogatemodelsforexploringsocialcontagioninthecopenhagennetworksstudy AT lochnerjakobh doseresponsefunctionsandsurrogatemodelsforexploringsocialcontagioninthecopenhagennetworksstudy AT kitzmannniklash doseresponsefunctionsandsurrogatemodelsforexploringsocialcontagioninthecopenhagennetworksstudy AT heitzigjobst doseresponsefunctionsandsurrogatemodelsforexploringsocialcontagioninthecopenhagennetworksstudy AT lehmannsune doseresponsefunctionsandsurrogatemodelsforexploringsocialcontagioninthecopenhagennetworksstudy AT wiedermannmarc doseresponsefunctionsandsurrogatemodelsforexploringsocialcontagioninthecopenhagennetworksstudy AT vollmerjurgen doseresponsefunctionsandsurrogatemodelsforexploringsocialcontagioninthecopenhagennetworksstudy |