Cargando…
Improving natural language information extraction from cancer pathology reports using transfer learning and zero-shot string similarity
OBJECTIVE: We develop natural language processing (NLP) methods capable of accurately classifying tumor attributes from pathology reports given minimal labeled examples. Our hierarchical cancer to cancer transfer (HCTC) and zero-shot string similarity (ZSS) methods are designed to exploit shared inf...
Autores principales: | Park, Briton, Altieri, Nicholas, DeNero, John, Odisho, Anobel Y, Yu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484934/ https://www.ncbi.nlm.nih.gov/pubmed/34604711 http://dx.doi.org/10.1093/jamiaopen/ooab085 |
Ejemplares similares
-
Natural language processing systems for pathology parsing in limited data environments with uncertainty estimation
por: Odisho, Anobel Y, et al.
Publicado: (2020) -
Zero-Shot Medical Image Retrieval for Emerging Infectious Diseases Based on Meta-Transfer Learning — Worldwide, 2020
por: Zhao, Yuying, et al.
Publicado: (2020) -
Design and development of Referrals Automation, a SMART on FHIR solution to improve patient access to specialty care
por: Odisho, Anobel Y, et al.
Publicado: (2020) -
Rapid design and implementation of an integrated patient self-triage and self-scheduling tool for COVID-19
por: Judson, Timothy J, et al.
Publicado: (2020) -
Evaluating the predictive ability of natural language processing in identifying tertiary/quaternary cases in prioritization workflows for interhospital transfer
por: Lee, Timothy, et al.
Publicado: (2023)