Cargando…
SHAP and LIME: An Evaluation of Discriminative Power in Credit Risk
In credit risk estimation, the most important element is obtaining a probability of default as close as possible to the effective risk. This effort quickly prompted new, powerful algorithms that reach a far higher accuracy, but at the cost of losing intelligibility, such as Gradient Boosting or ense...
Autores principales: | Gramegna, Alex, Giudici, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484963/ https://www.ncbi.nlm.nih.gov/pubmed/34604738 http://dx.doi.org/10.3389/frai.2021.752558 |
Ejemplares similares
-
Spatial Regression Models to Improve P2P Credit Risk Management
por: Agosto, Arianna, et al.
Publicado: (2019) -
Factorial Network Models to Improve P2P Credit Risk Management
por: Ahelegbey, Daniel Felix, et al.
Publicado: (2019) -
Network Based Scoring Models to Improve Credit Risk Management in Peer to Peer Lending Platforms
por: Giudici, Paolo, et al.
Publicado: (2019) -
Credit Risk Modeling Using Transfer Learning and Domain Adaptation
por: Suryanto, Hendra, et al.
Publicado: (2022) -
Fintech Risk Management: A Research Challenge for Artificial Intelligence in Finance
por: Giudici, Paolo
Publicado: (2018)