Cargando…
Role of salt-inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Currently, surgery, chemotherapy and radiation therapy are the conventional approaches used to treat CRC. However, these therapy strategies cause several side effects. The present study aimed to develop an alternative and mor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485122/ https://www.ncbi.nlm.nih.gov/pubmed/34558647 http://dx.doi.org/10.3892/mmr.2021.12460 |
_version_ | 1784577472154566656 |
---|---|
author | Ni, Xiaohong Feng, Yongjiang Fu, Xiangwei |
author_facet | Ni, Xiaohong Feng, Yongjiang Fu, Xiangwei |
author_sort | Ni, Xiaohong |
collection | PubMed |
description | Colorectal cancer (CRC) is the third most common type of cancer worldwide. Currently, surgery, chemotherapy and radiation therapy are the conventional approaches used to treat CRC. However, these therapy strategies cause several side effects. The present study aimed to develop an alternative and more effective treatment approach for patients with CRC. It has been reported that salt-inducible kinase 2 (SIK2) acts as an oncogene. Therefore, in the present study, the expression levels of SIK2 were determined in CRC cells using western blot analysis and reverse transcription-quantitative PCR. In addition, SIK2 was knocked down in CRC cells to evaluate its role in cell proliferation, migration, invasion and glycolysis using Cell Counting Kit-8, wound healing, Transwell assays and glycolysis cell-based assay kit, respectively. Additionally, the target genes of SIK2 were identified using bioinformatics analysis, while SIK2 overexpression experiments were carried out to determine whether SIK2 could regulate CRC cell malignant behavior and glycolysis. The results revealed that SIK2 was upregulated in CRC cells. Furthermore, SIK2 knockdown attenuated CRC cell proliferation, migration, invasion and glycolysis. Bioinformatics analysis predicted that SIK2 could interact with tripartite motif containing 28 (TRIM28), while TRIM28 overexpression could reverse the effects of SIK2 silencing on cell proliferation, migration, invasion and glycolysis. This finding indicated that the aforementioned effects of SIK2 were mediated by regulating TRIM28. In conclusion, the findings of the present study suggested that SIK2 may be involved in CRC carcinogenesis and glycolysis by regulating TRIM28 expression. These findings could provide a novel approach to targeted therapy and clinical diagnosis of CRC in the future. |
format | Online Article Text |
id | pubmed-8485122 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-84851222021-10-07 Role of salt-inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells Ni, Xiaohong Feng, Yongjiang Fu, Xiangwei Mol Med Rep Articles Colorectal cancer (CRC) is the third most common type of cancer worldwide. Currently, surgery, chemotherapy and radiation therapy are the conventional approaches used to treat CRC. However, these therapy strategies cause several side effects. The present study aimed to develop an alternative and more effective treatment approach for patients with CRC. It has been reported that salt-inducible kinase 2 (SIK2) acts as an oncogene. Therefore, in the present study, the expression levels of SIK2 were determined in CRC cells using western blot analysis and reverse transcription-quantitative PCR. In addition, SIK2 was knocked down in CRC cells to evaluate its role in cell proliferation, migration, invasion and glycolysis using Cell Counting Kit-8, wound healing, Transwell assays and glycolysis cell-based assay kit, respectively. Additionally, the target genes of SIK2 were identified using bioinformatics analysis, while SIK2 overexpression experiments were carried out to determine whether SIK2 could regulate CRC cell malignant behavior and glycolysis. The results revealed that SIK2 was upregulated in CRC cells. Furthermore, SIK2 knockdown attenuated CRC cell proliferation, migration, invasion and glycolysis. Bioinformatics analysis predicted that SIK2 could interact with tripartite motif containing 28 (TRIM28), while TRIM28 overexpression could reverse the effects of SIK2 silencing on cell proliferation, migration, invasion and glycolysis. This finding indicated that the aforementioned effects of SIK2 were mediated by regulating TRIM28. In conclusion, the findings of the present study suggested that SIK2 may be involved in CRC carcinogenesis and glycolysis by regulating TRIM28 expression. These findings could provide a novel approach to targeted therapy and clinical diagnosis of CRC in the future. D.A. Spandidos 2021-11 2021-09-24 /pmc/articles/PMC8485122/ /pubmed/34558647 http://dx.doi.org/10.3892/mmr.2021.12460 Text en Copyright: © Ni et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Ni, Xiaohong Feng, Yongjiang Fu, Xiangwei Role of salt-inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells |
title | Role of salt-inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells |
title_full | Role of salt-inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells |
title_fullStr | Role of salt-inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells |
title_full_unstemmed | Role of salt-inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells |
title_short | Role of salt-inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells |
title_sort | role of salt-inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485122/ https://www.ncbi.nlm.nih.gov/pubmed/34558647 http://dx.doi.org/10.3892/mmr.2021.12460 |
work_keys_str_mv | AT nixiaohong roleofsaltinduciblekinase2inthemalignantbehaviorandglycolysisofcolorectalcancercells AT fengyongjiang roleofsaltinduciblekinase2inthemalignantbehaviorandglycolysisofcolorectalcancercells AT fuxiangwei roleofsaltinduciblekinase2inthemalignantbehaviorandglycolysisofcolorectalcancercells |