Cargando…
Machine Learning–Based Analysis of Encrypted Medical Data in the Cloud: Qualitative Study of Expert Stakeholders’ Perspectives
BACKGROUND: Third-party cloud-based data analysis applications are proliferating in electronic health (eHealth) because of the expertise offered and their monetary advantage. However, privacy and security are critical concerns when handling sensitive medical data in the cloud. Technical advances bas...
Autores principales: | Alaqra, Ala Sarah, Kane, Bridget, Fischer-Hübner, Simone |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485196/ https://www.ncbi.nlm.nih.gov/pubmed/34528892 http://dx.doi.org/10.2196/21810 |
Ejemplares similares
-
Enhancing Privacy Controls for Patients via a Selective Authentic Electronic Health Record Exchange Service: Qualitative Study of Perspectives by Medical Professionals and Patients
por: Alaqra, Ala Sarah, et al.
Publicado: (2018) -
Securing Machine Learning in the Cloud: A Systematic Review of Cloud Machine Learning Security
por: Qayyum, Adnan, et al.
Publicado: (2020) -
Key Aggregation Cryptosystem and Double Encryption Method for Cloud-Based Intelligent Machine Learning Techniques-Based Health Monitoring Systems
por: Almuzaini, Khalid K., et al.
Publicado: (2022) -
Handling Public Well-being During the COVID-19 Crisis: Empirical Study With Representatives From Municipalities in Sweden
por: Alaqra, Ala Sarah, et al.
Publicado: (2023) -
ABEBox: end-to-end encryption for file sharing cloud services
por: Bracciale, Lorenzo
Publicado: (2022)