Cargando…
Representation learning of resting state fMRI with variational autoencoder
Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentang...
Autores principales: | Kim, Jung-Hoon, Zhang, Yizhen, Han, Kuan, Wen, Zheyu, Choi, Minkyu, Liu, Zhongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485214/ https://www.ncbi.nlm.nih.gov/pubmed/34303794 http://dx.doi.org/10.1016/j.neuroimage.2021.118423 |
Ejemplares similares
-
Spatiotemporal trajectories in resting-state FMRI revealed by convolutional variational autoencoder
por: Zhang, Xiaodi, et al.
Publicado: (2021) -
Maintenance and Representation of Mind Wandering during Resting-State fMRI
por: Chou, Ying-hui, et al.
Publicado: (2017) -
Robust brain parcellation using sparse representation on resting-state fMRI
por: Zhang, Yu, et al.
Publicado: (2014) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
On consciousness, resting state fMRI, and neurodynamics
por: Lundervold, Arvid
Publicado: (2010)