Cargando…
Pipeline therapies for neovascular age related macular degeneration
Age related macular degeneration (AMD) is the most common cause of vision loss in the elderly population. Neovascular AMD comprises 10% of all cases and can lead to devastating visual loss due to choroidal neovascularization (CNV). There are various cytokine pathways involved in the formation and le...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485527/ https://www.ncbi.nlm.nih.gov/pubmed/34598731 http://dx.doi.org/10.1186/s40942-021-00325-5 |
_version_ | 1784577554252824576 |
---|---|
author | Arepalli, Sruthi Kaiser, Peter K. |
author_facet | Arepalli, Sruthi Kaiser, Peter K. |
author_sort | Arepalli, Sruthi |
collection | PubMed |
description | Age related macular degeneration (AMD) is the most common cause of vision loss in the elderly population. Neovascular AMD comprises 10% of all cases and can lead to devastating visual loss due to choroidal neovascularization (CNV). There are various cytokine pathways involved in the formation and leakage from CNV. Prior treatments have included focal laser therapy, verteporfin (Visudyne, Bausch and Lomb, Rochester, New York) ocular photodynamic therapy, transpupillary thermotherapy, intravitreal steroids and surgical excision of choroidal neovascular membranes. Currently, the major therapies in AMD focus on the VEGF-A pathway, of which the most common are bevacizumab (Avastin; Genentech, San Francisco, California), ranibizumab (Lucentis; Genentech, South San Francisco, California), and aflibercept (Eylea; Regeneron, Tarrytown, New York). Anti-VEGF agents have revolutionized our treatment of wet AMD; however, real world studies have shown limited visual improvement in patients over time, largely due to the large treatment burden. Cheaper alternatives, including ranibizumab biosimilars, include razumab (Intas Pharmaceuticals Ltd., Ahmedabad, India), FYB 201 (Formycon AG, Munich, Germany and Bioeq Gmbh Holzkirchen, Germany), SB-11 (Samsung Bioepsis, Incheon, South Korea), xlucane (Xbrane Biopharma, Solna, Sweden), PF582 (Pfnex, San Diego, California), CHS3551 (Coherus BioSciences, Redwood City, California). Additionally, aflibercept biosimilars under development include FYB203 (Formycon AG, Munich, Germany and Bioeq Gmbh Holzkirchen, Germany), ALT-L9 (Alteogen, Deajeon, South Korea), MYL1710 (Momenta Pharamaceuticals, Cambridge, MA, and Mylan Pharmacueticals, Canonsburg, PA), CHS-2020 (Coherus BioSciences, Redwood City, California). Those in the pipeline of VEGF targets include abicipar pegol (Abicipar; Allergan, Coolock, Dublin), OPT-302 (Opthea; OPTHEA limited; Victoria, Melbourne), conbercept (Lumitin; Chengdu Kanghong Pharmaceutical Group, Chengdu, Sichuan), and KSI-301 (Kodiak Sciences, Palo Alto, CA). There are also combination medications, which target VEGF and PDGF, VEGF and tissue factor, VEGF and Tie-2, which this paper will also discuss in depth. Furthermore, long lasting depots, such as the ranibizumab port delivery system (PDS) (Genentech, San Francisco, CA), as well as others are under evaluation. Gene therapy present possible longer treatments options as well and are reviewed here. This paper will highlight the past approved medications as well as pipeline therapies for neovascular AMD. |
format | Online Article Text |
id | pubmed-8485527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-84855272021-10-04 Pipeline therapies for neovascular age related macular degeneration Arepalli, Sruthi Kaiser, Peter K. Int J Retina Vitreous Review Age related macular degeneration (AMD) is the most common cause of vision loss in the elderly population. Neovascular AMD comprises 10% of all cases and can lead to devastating visual loss due to choroidal neovascularization (CNV). There are various cytokine pathways involved in the formation and leakage from CNV. Prior treatments have included focal laser therapy, verteporfin (Visudyne, Bausch and Lomb, Rochester, New York) ocular photodynamic therapy, transpupillary thermotherapy, intravitreal steroids and surgical excision of choroidal neovascular membranes. Currently, the major therapies in AMD focus on the VEGF-A pathway, of which the most common are bevacizumab (Avastin; Genentech, San Francisco, California), ranibizumab (Lucentis; Genentech, South San Francisco, California), and aflibercept (Eylea; Regeneron, Tarrytown, New York). Anti-VEGF agents have revolutionized our treatment of wet AMD; however, real world studies have shown limited visual improvement in patients over time, largely due to the large treatment burden. Cheaper alternatives, including ranibizumab biosimilars, include razumab (Intas Pharmaceuticals Ltd., Ahmedabad, India), FYB 201 (Formycon AG, Munich, Germany and Bioeq Gmbh Holzkirchen, Germany), SB-11 (Samsung Bioepsis, Incheon, South Korea), xlucane (Xbrane Biopharma, Solna, Sweden), PF582 (Pfnex, San Diego, California), CHS3551 (Coherus BioSciences, Redwood City, California). Additionally, aflibercept biosimilars under development include FYB203 (Formycon AG, Munich, Germany and Bioeq Gmbh Holzkirchen, Germany), ALT-L9 (Alteogen, Deajeon, South Korea), MYL1710 (Momenta Pharamaceuticals, Cambridge, MA, and Mylan Pharmacueticals, Canonsburg, PA), CHS-2020 (Coherus BioSciences, Redwood City, California). Those in the pipeline of VEGF targets include abicipar pegol (Abicipar; Allergan, Coolock, Dublin), OPT-302 (Opthea; OPTHEA limited; Victoria, Melbourne), conbercept (Lumitin; Chengdu Kanghong Pharmaceutical Group, Chengdu, Sichuan), and KSI-301 (Kodiak Sciences, Palo Alto, CA). There are also combination medications, which target VEGF and PDGF, VEGF and tissue factor, VEGF and Tie-2, which this paper will also discuss in depth. Furthermore, long lasting depots, such as the ranibizumab port delivery system (PDS) (Genentech, San Francisco, CA), as well as others are under evaluation. Gene therapy present possible longer treatments options as well and are reviewed here. This paper will highlight the past approved medications as well as pipeline therapies for neovascular AMD. BioMed Central 2021-10-01 /pmc/articles/PMC8485527/ /pubmed/34598731 http://dx.doi.org/10.1186/s40942-021-00325-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Review Arepalli, Sruthi Kaiser, Peter K. Pipeline therapies for neovascular age related macular degeneration |
title | Pipeline therapies for neovascular age related macular degeneration |
title_full | Pipeline therapies for neovascular age related macular degeneration |
title_fullStr | Pipeline therapies for neovascular age related macular degeneration |
title_full_unstemmed | Pipeline therapies for neovascular age related macular degeneration |
title_short | Pipeline therapies for neovascular age related macular degeneration |
title_sort | pipeline therapies for neovascular age related macular degeneration |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485527/ https://www.ncbi.nlm.nih.gov/pubmed/34598731 http://dx.doi.org/10.1186/s40942-021-00325-5 |
work_keys_str_mv | AT arepallisruthi pipelinetherapiesforneovascularagerelatedmaculardegeneration AT kaiserpeterk pipelinetherapiesforneovascularagerelatedmaculardegeneration |