Cargando…
Predicting Sarcopenia of Female Elderly from Physical Activity Performance Measurement Using Machine Learning Classifiers
PURPOSE: Sarcopenia is a symptom in which muscle mass decreases due to decreasing in the number of muscle fibers and muscle cross-sectional area as aging. This study aimed to develop a machine learning classification model for predicting sarcopenia through a inertial measurement unit (IMU)-based phy...
Autores principales: | Ko, Jeong Bae, Kim, Kwang Bok, Shin, Young Sub, Han, Hun, Han, Sang Kuy, Jung, Duk Young, Hong, Jae Soo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485854/ https://www.ncbi.nlm.nih.gov/pubmed/34611396 http://dx.doi.org/10.2147/CIA.S323761 |
Ejemplares similares
-
Machine Learning-Based Predicted Age of the Elderly on the Instrumented Timed Up and Go Test and Six-Minute Walk Test
por: Ko, Jeong Bae, et al.
Publicado: (2022) -
Comparison between Deep Learning and Conventional Machine Learning in Classifying Iliofemoral Deep Venous Thrombosis upon CT Venography
por: Hwang, Jung Han, et al.
Publicado: (2022) -
Machine Learning Classifies Core and Outer Fucosylation of N-Glycoproteins Using Mass Spectrometry
por: Hwang, Heeyoun, et al.
Publicado: (2020) -
A study on the characteristics of standing posture of elderly women with sarcopenia in Korea
por: Kim, Min-Jeong, et al.
Publicado: (2018) -
Impact of sarcopenia and phase angle on mortality of the very elderly
por: Kwon, Young Eun, et al.
Publicado: (2022)