Cargando…
TorchMD: A Deep Learning Framework for Molecular Simulations
[Image: see text] Molecular dynamics simulations provide a mechanistic description of molecules by relying on empirical potentials. The quality and transferability of such potentials can be improved leveraging data-driven models derived with machine learning approaches. Here, we present TorchMD, a f...
Autores principales: | Doerr, Stefan, Majewski, Maciej, Pérez, Adrià, Krämer, Andreas, Clementi, Cecilia, Noe, Frank, Giorgino, Toni, De Fabritiis, Gianni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486166/ https://www.ncbi.nlm.nih.gov/pubmed/33729795 http://dx.doi.org/10.1021/acs.jctc.0c01343 |
Ejemplares similares
-
Machine learning coarse-grained potentials of protein thermodynamics
por: Majewski, Maciej, et al.
Publicado: (2023) -
TORCH simulation
por: Blake, Thomas, et al.
Publicado: (2022) -
Machine Learning of Coarse-Grained Molecular Dynamics
Force Fields
por: Wang, Jiang, et al.
Publicado: (2019) -
Deep Learning with PyTorch
por: Antiga, Luca
Publicado: (2020) -
Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning framework PyTorch
por: Laporte, Floris, et al.
Publicado: (2019)