Cargando…
Adsorption of As(III), Pb(II), and Zn(II) from Wastewater by Sodium Alginate Modified Materials
Sodium alginate (SA), polyvinyl oxide (PEO), and ceramic nanomaterials were used to prepare alginate composite gel. The present study examined the removal rate and adsorption capacity of alginate composite gel for removal of wastewater As(III), Pb(II), and Zn(II). Batch experiments were conducted to...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486504/ https://www.ncbi.nlm.nih.gov/pubmed/34603816 http://dx.doi.org/10.1155/2021/7527848 |
Sumario: | Sodium alginate (SA), polyvinyl oxide (PEO), and ceramic nanomaterials were used to prepare alginate composite gel. The present study examined the removal rate and adsorption capacity of alginate composite gel for removal of wastewater As(III), Pb(II), and Zn(II). Batch experiments were conducted to study the influence of experimental parameters such as pH and temperature, as well as the mechanism of As(III), Pb(II), and Zn(II) adsorption with the new adsorbent. The results showed the high efficiency of sodium alginate composite gel for removal of wastewater As(III), Pb(II), and Zn(II). Under the condition of the best liquid-solid ratio and the contact time, the removal rates of As(III), Pb(II), and Zn(II) were 67.42%, 95.31%, and 93.96%, respectively. The pseudo-second-order kinetic equation was superior to fit the adsorption kinetics process. The isothermal adsorption models of As(III) and Pb(II) fitted well with the Freundlich model, and Zn(II) fitted well with the Langmuir model. The results of SEM, EDS, XPS, and FTIR analyses revealed that the adsorption process occurred mainly via chemisorption. The results of the present study suggest that new adsorbents can be effectively utilized for As(III), Pb(II), and Zn(II) removal from water. |
---|