Cargando…
Medical Text Classification Using Hybrid Deep Learning Models with Multihead Attention
To unlock information present in clinical description, automatic medical text classification is highly useful in the arena of natural language processing (NLP). For medical text classification tasks, machine learning techniques seem to be quite effective; however, it requires extensive effort from h...
Autores principales: | Prabhakar, Sunil Kumar, Won, Dong-Ok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486521/ https://www.ncbi.nlm.nih.gov/pubmed/34603437 http://dx.doi.org/10.1155/2021/9425655 |
Ejemplares similares
-
Graph Multihead Attention Pooling with Self-Supervised Learning
por: Wang, Yu, et al.
Publicado: (2022) -
A Fusion-Based Technique With Hybrid Swarm Algorithm and Deep Learning for Biosignal Classification
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2022) -
A Framework for Text Classification Using Evolutionary Contiguous Convolutional Neural Network and Swarm Based Deep Neural Network
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2022) -
Chemical–protein interaction extraction via contextualized word representations and multihead attention
por: Zhang, Yijia, et al.
Publicado: (2019) -
Incorporating representation learning and multihead attention to improve biomedical cross-sentence n-ary relation extraction
por: Zhao, Di, et al.
Publicado: (2020)