Cargando…
imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics
Liquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor‐educated platelets. Here, we developed the imPlatelet classifier, which converts RNA‐sequenced platelet dat...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486571/ https://www.ncbi.nlm.nih.gov/pubmed/34013585 http://dx.doi.org/10.1002/1878-0261.13014 |
_version_ | 1784577772097634304 |
---|---|
author | Pastuszak, Krzysztof Supernat, Anna Best, Myron G. In 't Veld, Sjors G.J.G. Łapińska‐Szumczyk, Sylwia Łojkowska, Anna Różański, Robert Żaczek, Anna J. Jassem, Jacek Würdinger, Thomas Stokowy, Tomasz |
author_facet | Pastuszak, Krzysztof Supernat, Anna Best, Myron G. In 't Veld, Sjors G.J.G. Łapińska‐Szumczyk, Sylwia Łojkowska, Anna Różański, Robert Żaczek, Anna J. Jassem, Jacek Würdinger, Thomas Stokowy, Tomasz |
author_sort | Pastuszak, Krzysztof |
collection | PubMed |
description | Liquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor‐educated platelets. Here, we developed the imPlatelet classifier, which converts RNA‐sequenced platelet data into images in which each pixel corresponds to the expression level of a certain gene. Biological knowledge from the Kyoto Encyclopedia of Genes and Genomes was also implemented to improve accuracy. Images obtained from samples can then be compared against standard images for specific cancers to determine a diagnosis. We tested imPlatelet on a cohort of 401 non‐small cell lung cancer patients, 62 sarcoma patients, and 28 ovarian cancer patients. imPlatelet provided excellent discrimination between lung cancer cases and healthy controls, with accuracy equal to 1 in the independent dataset. When discriminating between noncancer cases and sarcoma or ovarian cancer patients, accuracy equaled 0.91 or 0.95, respectively, in the independent datasets. According to our knowledge, this is the first study implementing an image‐based deep‐learning approach combined with biological knowledge to classify human samples. The performance of imPlatelet considerably exceeds previously published methods and our own alternative attempts of sample discrimination. We show that the deep‐learning image‐based classifier accurately identifies cancer, even when a limited number of samples are available. |
format | Online Article Text |
id | pubmed-8486571 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84865712021-10-07 imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics Pastuszak, Krzysztof Supernat, Anna Best, Myron G. In 't Veld, Sjors G.J.G. Łapińska‐Szumczyk, Sylwia Łojkowska, Anna Różański, Robert Żaczek, Anna J. Jassem, Jacek Würdinger, Thomas Stokowy, Tomasz Mol Oncol Research Articles Liquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor‐educated platelets. Here, we developed the imPlatelet classifier, which converts RNA‐sequenced platelet data into images in which each pixel corresponds to the expression level of a certain gene. Biological knowledge from the Kyoto Encyclopedia of Genes and Genomes was also implemented to improve accuracy. Images obtained from samples can then be compared against standard images for specific cancers to determine a diagnosis. We tested imPlatelet on a cohort of 401 non‐small cell lung cancer patients, 62 sarcoma patients, and 28 ovarian cancer patients. imPlatelet provided excellent discrimination between lung cancer cases and healthy controls, with accuracy equal to 1 in the independent dataset. When discriminating between noncancer cases and sarcoma or ovarian cancer patients, accuracy equaled 0.91 or 0.95, respectively, in the independent datasets. According to our knowledge, this is the first study implementing an image‐based deep‐learning approach combined with biological knowledge to classify human samples. The performance of imPlatelet considerably exceeds previously published methods and our own alternative attempts of sample discrimination. We show that the deep‐learning image‐based classifier accurately identifies cancer, even when a limited number of samples are available. John Wiley and Sons Inc. 2021-06-20 2021-10 /pmc/articles/PMC8486571/ /pubmed/34013585 http://dx.doi.org/10.1002/1878-0261.13014 Text en © 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Pastuszak, Krzysztof Supernat, Anna Best, Myron G. In 't Veld, Sjors G.J.G. Łapińska‐Szumczyk, Sylwia Łojkowska, Anna Różański, Robert Żaczek, Anna J. Jassem, Jacek Würdinger, Thomas Stokowy, Tomasz imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics |
title | imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics |
title_full | imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics |
title_fullStr | imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics |
title_full_unstemmed | imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics |
title_short | imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics |
title_sort | implatelet classifier: image‐converted rna biomarker profiles enable blood‐based cancer diagnostics |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486571/ https://www.ncbi.nlm.nih.gov/pubmed/34013585 http://dx.doi.org/10.1002/1878-0261.13014 |
work_keys_str_mv | AT pastuszakkrzysztof implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics AT supernatanna implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics AT bestmyrong implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics AT intveldsjorsgjg implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics AT łapinskaszumczyksylwia implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics AT łojkowskaanna implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics AT rozanskirobert implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics AT zaczekannaj implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics AT jassemjacek implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics AT wurdingerthomas implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics AT stokowytomasz implateletclassifierimageconvertedrnabiomarkerprofilesenablebloodbasedcancerdiagnostics |