Cargando…
Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network
Deep learning convolutional neural network (CNN) can predict mortality from chest radiographs, yet, it is unknown whether radiologists can perform the same task. Here, we investigate whether radiologists can visually assess image gestalt (defined as deviation from an unremarkable chest radiograph as...
Autores principales: | Weiss, Jakob, Taron, Jana, Jin, Zexi, Mayrhofer, Thomas, Aerts, Hugo J. W. L., Lu, Michael T., Hoffmann, Udo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486799/ https://www.ncbi.nlm.nih.gov/pubmed/34599265 http://dx.doi.org/10.1038/s41598-021-99107-0 |
Ejemplares similares
-
Deep Learning to Assess Long-term Mortality From Chest Radiographs
por: Lu, Michael T., et al.
Publicado: (2019) -
Deep learning to estimate lung disease mortality from chest radiographs
por: Weiss, Jakob, et al.
Publicado: (2023) -
Do pediatric intensivists and radiologists concur on the interpretation of chest radiographs?
por: Chambliss, C Robert, et al.
Publicado: (1998) -
The impact of artificial intelligence on the reading times of radiologists for chest radiographs
por: Shin, Hyun Joo, et al.
Publicado: (2023) -
Guideline-Based Statin Eligibility, Coronary Artery Stenosis and Cardiovascular Events in Patients with Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial
por: Pursnani, Amit, et al.
Publicado: (2020)