Cargando…
Budget constrained machine learning for early prediction of adverse outcomes for COVID-19 patients
The combination of machine learning (ML) and electronic health records (EHR) data may be able to improve outcomes of hospitalized COVID-19 patients through improved risk stratification and patient outcome prediction. However, in resource constrained environments the clinical utility of such data-dri...
Autores principales: | Nguyen, Sam, Chan, Ryan, Cadena, Jose, Soper, Braden, Kiszka, Paul, Womack, Lucas, Work, Mark, Duggan, Joan M., Haller, Steven T., Hanrahan, Jennifer A., Kennedy, David J., Mukundan, Deepa, Ray, Priyadip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486861/ https://www.ncbi.nlm.nih.gov/pubmed/34599200 http://dx.doi.org/10.1038/s41598-021-98071-z |
Ejemplares similares
-
Dynamic modeling of hospitalized COVID-19 patients reveals disease state–dependent risk factors
por: Soper, Braden C, et al.
Publicado: (2022) -
COVID‐19 outcomes in patients with cancer: Findings from the University of California health system database
por: Kwon, Daniel H., et al.
Publicado: (2022) -
Generation and evaluation of synthetic patient data
por: Goncalves, Andre, et al.
Publicado: (2020) -
Improving five-year survival prediction via multitask learning across HPV-related cancers
por: Goncalves, Andre, et al.
Publicado: (2020) -
Constraining the atmospheric OCS budget from sulfur isotopes
por: Hattori, Shohei, et al.
Publicado: (2020)