Cargando…
A Deep Neural Network Architecture to Model Reference Evapotranspiration Using a Single Input Meteorological Parameter
Hydro-agrological research considers the reference evapotranspiration (ETo), driven by meteorological variables, crucial for achieving precise irrigation in precision agriculture. ETo modelling based on a single meteorological parameter would be beneficial in places where the collection of climatic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486967/ http://dx.doi.org/10.1007/s40710-021-00543-x |
Sumario: | Hydro-agrological research considers the reference evapotranspiration (ETo), driven by meteorological variables, crucial for achieving precise irrigation in precision agriculture. ETo modelling based on a single meteorological parameter would be beneficial in places where the collection of climatic parameters is challenging. The aim of this research is to develop a deep neural network (DNN) architecture that predicts daily ETo with a single input parameter selected based on the feature importance (FI) score generated by the machine learning techniques, random forest (RF), and extreme gradient boosting (XGBoost). This study also investigated the potential of SHapley Additive exPlanations to interpret and validate the outcomes of the feature selection methods by assessing the contributions of each feature to the ETo prediction. These methods recommended solar radiation as a significant parameter in the datasets of three California Irrigation Management System (CIMIS) weather stations located in distinct ETo zones. Three ETo models (DNN-Ret, XGB-Ret, and RF-Ret) were built using solar radiation as the sole input, and CIMIS ETo as the output. The performance evaluation of the developed models proved that DNN-Ret outperformed XGB-Ret and RF-Ret regardless of the dataset, with coefficients of determination (R(2)) ranging from 0.914 to 0.954 in the local scenario, with an average decrease of 8–9.5% in mean absolute error and root mean squared error, and an improvement of 2.6–2.9% in Nash–Sutcliffe efficiency and 1.7–2% increase in R(2). The overall result analysis highlighted the efficiency of DNN-Ret in the single input parameter based ETo modelling in diverse climatic zones. |
---|