Cargando…
A Deep Neural Network Architecture to Model Reference Evapotranspiration Using a Single Input Meteorological Parameter
Hydro-agrological research considers the reference evapotranspiration (ETo), driven by meteorological variables, crucial for achieving precise irrigation in precision agriculture. ETo modelling based on a single meteorological parameter would be beneficial in places where the collection of climatic...
Autores principales: | Ravindran, Sowmya Mangalath, Bhaskaran, Santosh Kumar Moorakkal, Ambat, Sooraj Krishnan Nair |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486967/ http://dx.doi.org/10.1007/s40710-021-00543-x |
Ejemplares similares
-
Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables
por: Wu, Tianao, et al.
Publicado: (2020) -
Hysteresis Responses of Evapotranspiration to Meteorological Factors at a Diel Timescale: Patterns and Causes
por: Zheng, Han, et al.
Publicado: (2014) -
Evaluation of Empirical and Machine Learning Approaches for Estimating Monthly Reference Evapotranspiration with Limited Meteorological Data in the Jialing River Basin, China
por: Luo, Jia, et al.
Publicado: (2022) -
Prediction of the Reference Evapotranspiration Using a Chaotic Approach
por: Wang, Wei-guang, et al.
Publicado: (2014) -
Reference Evapotranspiration Modeling Using New Heuristic Methods
por: Muhammad Adnan, Rana, et al.
Publicado: (2020)