Cargando…

Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation

BACKGROUND & AIMS: The pathogenesis of Wilson disease (WD) involves hepatic and brain copper accumulation resulting from pathogenic variants affecting the ATP7B gene and downstream epigenetic and metabolic mechanisms. Prior methylome investigations in human WD liver and blood and in the Jackson...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarode, Gaurav V., Neier, Kari, Shibata, Noreene M., Shen, Yuanjun, Goncharov, Dmitry A., Goncharova, Elena A., Mazi, Tagreed A., Joshi, Nikhil, Settles, Matthew L., LaSalle, Janine M., Medici, Valentina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487080/
https://www.ncbi.nlm.nih.gov/pubmed/34098115
http://dx.doi.org/10.1016/j.jcmgh.2021.05.020
_version_ 1784577879825186816
author Sarode, Gaurav V.
Neier, Kari
Shibata, Noreene M.
Shen, Yuanjun
Goncharov, Dmitry A.
Goncharova, Elena A.
Mazi, Tagreed A.
Joshi, Nikhil
Settles, Matthew L.
LaSalle, Janine M.
Medici, Valentina
author_facet Sarode, Gaurav V.
Neier, Kari
Shibata, Noreene M.
Shen, Yuanjun
Goncharov, Dmitry A.
Goncharova, Elena A.
Mazi, Tagreed A.
Joshi, Nikhil
Settles, Matthew L.
LaSalle, Janine M.
Medici, Valentina
author_sort Sarode, Gaurav V.
collection PubMed
description BACKGROUND & AIMS: The pathogenesis of Wilson disease (WD) involves hepatic and brain copper accumulation resulting from pathogenic variants affecting the ATP7B gene and downstream epigenetic and metabolic mechanisms. Prior methylome investigations in human WD liver and blood and in the Jackson Laboratory (Bar Harbor, ME) C3He-Atp7b(tx-j)/J (tx-j) WD mouse model revealed an epigenetic signature of WD, including changes in histone deacetylase (HDAC) 5. We tested the hypothesis that histone acetylation is altered with respect to copper overload and aberrant DNA methylation in WD. METHODS: We investigated class IIa HDAC4 and HDAC5 and H3K9/H3K27 histone acetylation in tx-j mouse livers compared with C3HeB/FeJ (C3H) control in response to 3 treatments: 60% kcal fat diet, D-penicillamine (copper chelator), and choline (methyl group donor). Experiments with copper-loaded hepatoma G2 cells were conducted to validate in vivo studies. RESULTS: In 9-week tx-j mice, HDAC5 levels increased significantly after 8 days of a 60% kcal fat diet compared with chow. In 24-week tx-j mice, HDAC4/5 levels were reduced 5- to 10-fold compared with C3H, likely through mechanisms involving HDAC phosphorylation. HDAC4/5 levels were affected by disease progression and accompanied by increased acetylation. D-penicillamine and choline partially restored HDAC4/5 and H3K9ac/H3K27ac to C3H levels. Integrated RNA and chromatin immunoprecipitation sequencing analyses revealed genes regulating energy metabolism and cellular stress/development, which, in turn, were regulated by histone acetylation in tx-j mice compared with C3H mice, with Pparα and Pparγ among the most relevant targets. CONCLUSIONS: These results suggest dietary modulation of class IIa HDAC4/5, and subsequent H3K9/H3K27 acetylation/deacetylation can regulate gene expression in key metabolic pathways in the pathogenesis of WD.
format Online
Article
Text
id pubmed-8487080
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-84870802021-10-07 Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation Sarode, Gaurav V. Neier, Kari Shibata, Noreene M. Shen, Yuanjun Goncharov, Dmitry A. Goncharova, Elena A. Mazi, Tagreed A. Joshi, Nikhil Settles, Matthew L. LaSalle, Janine M. Medici, Valentina Cell Mol Gastroenterol Hepatol Original Research BACKGROUND & AIMS: The pathogenesis of Wilson disease (WD) involves hepatic and brain copper accumulation resulting from pathogenic variants affecting the ATP7B gene and downstream epigenetic and metabolic mechanisms. Prior methylome investigations in human WD liver and blood and in the Jackson Laboratory (Bar Harbor, ME) C3He-Atp7b(tx-j)/J (tx-j) WD mouse model revealed an epigenetic signature of WD, including changes in histone deacetylase (HDAC) 5. We tested the hypothesis that histone acetylation is altered with respect to copper overload and aberrant DNA methylation in WD. METHODS: We investigated class IIa HDAC4 and HDAC5 and H3K9/H3K27 histone acetylation in tx-j mouse livers compared with C3HeB/FeJ (C3H) control in response to 3 treatments: 60% kcal fat diet, D-penicillamine (copper chelator), and choline (methyl group donor). Experiments with copper-loaded hepatoma G2 cells were conducted to validate in vivo studies. RESULTS: In 9-week tx-j mice, HDAC5 levels increased significantly after 8 days of a 60% kcal fat diet compared with chow. In 24-week tx-j mice, HDAC4/5 levels were reduced 5- to 10-fold compared with C3H, likely through mechanisms involving HDAC phosphorylation. HDAC4/5 levels were affected by disease progression and accompanied by increased acetylation. D-penicillamine and choline partially restored HDAC4/5 and H3K9ac/H3K27ac to C3H levels. Integrated RNA and chromatin immunoprecipitation sequencing analyses revealed genes regulating energy metabolism and cellular stress/development, which, in turn, were regulated by histone acetylation in tx-j mice compared with C3H mice, with Pparα and Pparγ among the most relevant targets. CONCLUSIONS: These results suggest dietary modulation of class IIa HDAC4/5, and subsequent H3K9/H3K27 acetylation/deacetylation can regulate gene expression in key metabolic pathways in the pathogenesis of WD. Elsevier 2021-06-04 /pmc/articles/PMC8487080/ /pubmed/34098115 http://dx.doi.org/10.1016/j.jcmgh.2021.05.020 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Original Research
Sarode, Gaurav V.
Neier, Kari
Shibata, Noreene M.
Shen, Yuanjun
Goncharov, Dmitry A.
Goncharova, Elena A.
Mazi, Tagreed A.
Joshi, Nikhil
Settles, Matthew L.
LaSalle, Janine M.
Medici, Valentina
Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation
title Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation
title_full Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation
title_fullStr Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation
title_full_unstemmed Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation
title_short Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation
title_sort wilson disease: intersecting dna methylation and histone acetylation regulation of gene expression in a mouse model of hepatic copper accumulation
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487080/
https://www.ncbi.nlm.nih.gov/pubmed/34098115
http://dx.doi.org/10.1016/j.jcmgh.2021.05.020
work_keys_str_mv AT sarodegauravv wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation
AT neierkari wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation
AT shibatanoreenem wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation
AT shenyuanjun wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation
AT goncharovdmitrya wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation
AT goncharovaelenaa wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation
AT mazitagreeda wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation
AT joshinikhil wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation
AT settlesmatthewl wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation
AT lasallejaninem wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation
AT medicivalentina wilsondiseaseintersectingdnamethylationandhistoneacetylationregulationofgeneexpressioninamousemodelofhepaticcopperaccumulation