Cargando…
Hippocampus Segmentation Method Based on Subspace Patch-Sparsity Clustering in Noisy Brain MRI
Since the hippocampus is of small size, low contrast, and irregular shape, a novel hippocampus segmentation method based on subspace patch-sparsity clustering in brain MRI is proposed to improve the segmentation accuracy, which requires that the representation coefficients in different subspaces sho...
Autores principales: | Ren, Xiaogang, Wu, Yue, Cao, Zhiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487389/ https://www.ncbi.nlm.nih.gov/pubmed/34608408 http://dx.doi.org/10.1155/2021/3937222 |
Ejemplares similares
-
Sparsity-Aware Noise Subspace Fitting for DOA Estimation
por: Zheng, Chundi, et al.
Publicado: (2019) -
Multimodal MRI Brain Tumor Image Segmentation Using Sparse Subspace Clustering Algorithm
por: Liu, Li, et al.
Publicado: (2020) -
Negentropy-Based Sparsity-Promoting Reconstruction with Fast Iterative Solution from Noisy Measurements
por: Zhao, Yingxin, et al.
Publicado: (2020) -
Robust auto-weighted multi-view subspace clustering with common subspace representation matrix
por: Zhuge, Wenzhang, et al.
Publicado: (2017) -
One-Step Robust Low-Rank Subspace Segmentation for Tumor Sample Clustering
por: Liu, Jian, et al.
Publicado: (2021)