Cargando…
The reporting quality of natural language processing studies: systematic review of studies of radiology reports
BACKGROUND: Automated language analysis of radiology reports using natural language processing (NLP) can provide valuable information on patients’ health and disease. With its rapid development, NLP studies should have transparent methodology to allow comparison of approaches and reproducibility. Th...
Autores principales: | Davidson, Emma M., Poon, Michael T. C., Casey, Arlene, Grivas, Andreas, Duma, Daniel, Dong, Hang, Suárez-Paniagua, Víctor, Grover, Claire, Tobin, Richard, Whalley, Heather, Wu, Honghan, Alex, Beatrice, Whiteley, William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487512/ https://www.ncbi.nlm.nih.gov/pubmed/34600486 http://dx.doi.org/10.1186/s12880-021-00671-8 |
Ejemplares similares
-
A systematic review of natural language processing applied to radiology reports
por: Casey, Arlene, et al.
Publicado: (2021) -
Understanding the performance and reliability of NLP tools: a comparison of four NLP tools predicting stroke phenotypes in radiology reports
por: Casey, Arlene, et al.
Publicado: (2023) -
Ontology-driven and weakly supervised rare disease identification from clinical notes
por: Dong, Hang, et al.
Publicado: (2023) -
A validated natural language processing algorithm for brain imaging phenotypes from radiology reports in UK electronic health records
por: Wheater, Emily, et al.
Publicado: (2019) -
Text mining brain imaging reports
por: Alex, Beatrice, et al.
Publicado: (2019)