Cargando…
Prognostic value of CAD-RADS classification by coronary CTA in patients with suspected CAD
BACKGROUND: The study sought to compare Coronary Artery Disease Reporting and Data System (CAD-RADS) classification with traditional coronary artery disease (CAD) classifications and Duke Prognostic CAD Index for predicting the risk of all-cause mortality in patients with suspected CAD. METHODS: 962...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487531/ https://www.ncbi.nlm.nih.gov/pubmed/34602055 http://dx.doi.org/10.1186/s12872-021-02286-x |
Sumario: | BACKGROUND: The study sought to compare Coronary Artery Disease Reporting and Data System (CAD-RADS) classification with traditional coronary artery disease (CAD) classifications and Duke Prognostic CAD Index for predicting the risk of all-cause mortality in patients with suspected CAD. METHODS: 9625 consecutive suspected CAD patients were assessed by coronary CTA for CAD-RADS classification, traditional CAD classifications and Duke Prognostic CAD Index. Kaplan–Meier and multivariable Cox models were used to estimate all-cause mortality. Discriminatory ability of classifications was assessed using time dependent receiver-operating characteristic (ROC) curves and The Hosmer–Lemeshow goodness-of-fit test was employed to evaluate calibration. RESULTS: A total of 540 patients died from all causes with a median follow-up of 4.3 ± 2.1 years. Kaplan–Meier survival curves showed the cumulative events increased significantly associated with CAD-RADS, three traditional CAD classifications and Duke Prognostic CAD Index. In multivariate Cox regressions, the risk for the all-cause death increased from HR 0.861 (95% CI 0.420–1.764) for CAD-RADS 1 to HR 2.761 (95% CI 1.961–3.887) for CAD-RADS 4B&5, using CAD-RADS 0 as the reference group. The relative HRs for all-cause death increased proportionally with the grades of the three traditional CAD classifications and Duke Prognostic CAD Index. The area under the time dependent ROC curve for prediction of all-cause death was 0.7917, 0.7805, 0.7991for CAD-RADS in 1 year, 3 year, 5 year, respectively, which was non-inferior to the traditional CAD classifications and Duke Prognostic CAD Index. CONCLUSIONS: The CAD-RADS classification provided important prognostic information for patients with suspected CAD with noninvasive evaluation, which was non-inferior than Duke Prognostic CAD Index and traditional stenosis-based grading schemes in prognostic value of all-cause mortality. Traditional and simplest CAD classification should be preferable, given the more number of groups and complexity of CAD-RADS and Duke prognostic index, without using more time consuming classification. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-021-02286-x. |
---|