Cargando…
Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds
BACKGROUND: Although the treatments of skin wounds have greatly improved with the increase in therapeutic methods and agents, available interventions still cannot meet the current clinical needs. Therefore, the development of new pro-regenerative therapies remains urgent. Owing to their unique chara...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487533/ https://www.ncbi.nlm.nih.gov/pubmed/34600530 http://dx.doi.org/10.1186/s12951-021-01049-2 |
_version_ | 1784577975698587648 |
---|---|
author | Sun, Huiling Wang, Ying He, Tiantian He, Dingwei Hu, Yan Fu, Zhe Wang, Yinglei Sun, Dandan Wang, Junsong Liu, Yixiang Shu, Longjun He, Li Deng, Ziwei Yang, Xinwang |
author_facet | Sun, Huiling Wang, Ying He, Tiantian He, Dingwei Hu, Yan Fu, Zhe Wang, Yinglei Sun, Dandan Wang, Junsong Liu, Yixiang Shu, Longjun He, Li Deng, Ziwei Yang, Xinwang |
author_sort | Sun, Huiling |
collection | PubMed |
description | BACKGROUND: Although the treatments of skin wounds have greatly improved with the increase in therapeutic methods and agents, available interventions still cannot meet the current clinical needs. Therefore, the development of new pro-regenerative therapies remains urgent. Owing to their unique characteristics, both nanomaterials and peptides have provided novel clues for the development of pro-regenerative agents, however, more efforts were still be awaited and anticipated. RESULTS: In the current research, Hollow polydopamine (HPDA) nanoparticles were synthesized and HPDA nanoparticles loading with RL-QN15 (HPDAlR) that was an amphibian-derived peptide with obvious prohealing activities were prepared successfully. The characterization, biodistribution and clearance of both HPDA nanoparticles and HPDAlR were evaluated, the loading efficiency of HPDA against RL-QN15 and the slow-releasing rate of RL-QN15 from HPDAlR were also determined. Our results showed that both HPDA nanoparticles and HPDAlR exerted no obvious toxicity against keratinocyte, macrophage and mice, and HPDA nanoparticles showed no prohealing potency in vivo and in vitro. Interestingly, HPDAlR significantly enhanced the ability of RL-QN15 to accelerate the healing of scratch of keratinocytes and selectively modulate the release of healing-involved cytokines from macrophages. More importantly, in comparison with RL-QN15, by evaluating on animal models of full-thickness injured skin wounds in mice and oral ulcers in rats, HPDAlR showed significant increasing in the pro-regenerative potency of 50 and 10 times, respectively. Moreover, HPDAlR also enhanced the prohealing efficiency of peptide RL-QN15 against skin scald in mice and full-thickness injured wounds in swine. CONCLUSIONS: HPDA obviously enhanced the pro-regenerative potency of RL-QN15 in vitro and in vivo, hence HPDAlR exhibited great potential in the development of therapeutics for skin wound healing. GRAPHIC ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-021-01049-2. |
format | Online Article Text |
id | pubmed-8487533 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-84875332021-10-04 Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds Sun, Huiling Wang, Ying He, Tiantian He, Dingwei Hu, Yan Fu, Zhe Wang, Yinglei Sun, Dandan Wang, Junsong Liu, Yixiang Shu, Longjun He, Li Deng, Ziwei Yang, Xinwang J Nanobiotechnology Research BACKGROUND: Although the treatments of skin wounds have greatly improved with the increase in therapeutic methods and agents, available interventions still cannot meet the current clinical needs. Therefore, the development of new pro-regenerative therapies remains urgent. Owing to their unique characteristics, both nanomaterials and peptides have provided novel clues for the development of pro-regenerative agents, however, more efforts were still be awaited and anticipated. RESULTS: In the current research, Hollow polydopamine (HPDA) nanoparticles were synthesized and HPDA nanoparticles loading with RL-QN15 (HPDAlR) that was an amphibian-derived peptide with obvious prohealing activities were prepared successfully. The characterization, biodistribution and clearance of both HPDA nanoparticles and HPDAlR were evaluated, the loading efficiency of HPDA against RL-QN15 and the slow-releasing rate of RL-QN15 from HPDAlR were also determined. Our results showed that both HPDA nanoparticles and HPDAlR exerted no obvious toxicity against keratinocyte, macrophage and mice, and HPDA nanoparticles showed no prohealing potency in vivo and in vitro. Interestingly, HPDAlR significantly enhanced the ability of RL-QN15 to accelerate the healing of scratch of keratinocytes and selectively modulate the release of healing-involved cytokines from macrophages. More importantly, in comparison with RL-QN15, by evaluating on animal models of full-thickness injured skin wounds in mice and oral ulcers in rats, HPDAlR showed significant increasing in the pro-regenerative potency of 50 and 10 times, respectively. Moreover, HPDAlR also enhanced the prohealing efficiency of peptide RL-QN15 against skin scald in mice and full-thickness injured wounds in swine. CONCLUSIONS: HPDA obviously enhanced the pro-regenerative potency of RL-QN15 in vitro and in vivo, hence HPDAlR exhibited great potential in the development of therapeutics for skin wound healing. GRAPHIC ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-021-01049-2. BioMed Central 2021-10-02 /pmc/articles/PMC8487533/ /pubmed/34600530 http://dx.doi.org/10.1186/s12951-021-01049-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Sun, Huiling Wang, Ying He, Tiantian He, Dingwei Hu, Yan Fu, Zhe Wang, Yinglei Sun, Dandan Wang, Junsong Liu, Yixiang Shu, Longjun He, Li Deng, Ziwei Yang, Xinwang Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds |
title | Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds |
title_full | Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds |
title_fullStr | Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds |
title_full_unstemmed | Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds |
title_short | Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds |
title_sort | hollow polydopamine nanoparticles loading with peptide rl-qn15: a new pro-regenerative therapeutic agent for skin wounds |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487533/ https://www.ncbi.nlm.nih.gov/pubmed/34600530 http://dx.doi.org/10.1186/s12951-021-01049-2 |
work_keys_str_mv | AT sunhuiling hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT wangying hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT hetiantian hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT hedingwei hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT huyan hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT fuzhe hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT wangyinglei hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT sundandan hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT wangjunsong hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT liuyixiang hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT shulongjun hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT heli hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT dengziwei hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds AT yangxinwang hollowpolydopaminenanoparticlesloadingwithpeptiderlqn15anewproregenerativetherapeuticagentforskinwounds |