Cargando…
Scalable estimator of the diversity for de novo molecular generation resulting in a more robust QM dataset (OD9) and a more efficient molecular optimization
Chemical diversity is one of the key term when dealing with machine learning and molecular generation. This is particularly true for quantum chemical datasets. The composition of which should be done meticulously since the calculation is highly time demanding. Previously we have seen that the most k...
Autores principales: | Leguy, Jules, Glavatskikh, Marta, Cauchy, Thomas, Da Mota, Benoit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487551/ https://www.ncbi.nlm.nih.gov/pubmed/34600576 http://dx.doi.org/10.1186/s13321-021-00554-8 |
Ejemplares similares
-
EvoMol: a flexible and interpretable evolutionary algorithm for unbiased de novo molecular generation
por: Leguy, Jules, et al.
Publicado: (2020) -
Dataset’s chemical diversity limits the generalizability of machine learning predictions
por: Glavatskikh, Marta, et al.
Publicado: (2019) -
Assessment of Ferritic ODS Steels Obtained by Laser Additive Manufacturing
por: Autones, Lucas, et al.
Publicado: (2023) -
MultiXC-QM9: Large dataset of molecular and reaction energies from multi-level quantum chemical methods
por: Nandi, Surajit, et al.
Publicado: (2023) -
Orthologous Matrix (OMA) algorithm 2.0: more robust to asymmetric evolutionary rates and more scalable hierarchical orthologous group inference
por: Train, Clément-Marie, et al.
Publicado: (2017)