Cargando…
Multi-task multi-modality SVM for early COVID-19 Diagnosis using chest CT data
In the early diagnosis of the Coronavirus disease (COVID-19), it is of great importance for either distinguishing severe cases from mild cases or predicting the conversion time that mild cases would possibly convert to severe cases. This study investigates both of them in a unified framework by expl...
Autores principales: | Hu, Rongyao, Gan, Jiangzhang, Zhu, Xiaofeng, Liu, Tong, Shi, Xiaoshuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487772/ https://www.ncbi.nlm.nih.gov/pubmed/34629687 http://dx.doi.org/10.1016/j.ipm.2021.102782 |
Ejemplares similares
-
Joint prediction and time estimation of COVID-19 developing severe symptoms using chest CT scan
por: Zhu, Xiaofeng, et al.
Publicado: (2021) -
Explainable multi-task learning for multi-modality biological data analysis
por: Tang, Xin, et al.
Publicado: (2023) -
Multi-Modal Brain Tumor Detection Using Deep Neural Network and Multiclass SVM
por: Maqsood, Sarmad, et al.
Publicado: (2022) -
Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis
por: Chen, Hanxin, et al.
Publicado: (2022) -
Explainable multi-instance and multi-task learning for COVID-19 diagnosis and lesion segmentation in CT images()
por: Li, Minglei, et al.
Publicado: (2022)