Cargando…

Montreal Cognitive Assessment: Seeking a Single Cutoff Score May Not Be Optimal

BACKGROUND: Cutoff scores of the Montreal cognitive assessment (MoCA) for screening mild cognitive impairment in older adults differ across the world and within the Chinese culture. It is argued that to seek a cutoff score is essential to classify test participants. It was unknown how taking a class...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Chongming, Wang, Ling, Hu, Hui, Dong, Xinxiu, Wang, Yuncui, Yang, Fen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487840/
https://www.ncbi.nlm.nih.gov/pubmed/34616484
http://dx.doi.org/10.1155/2021/9984419
Descripción
Sumario:BACKGROUND: Cutoff scores of the Montreal cognitive assessment (MoCA) for screening mild cognitive impairment in older adults differ across the world and within the Chinese culture. It is argued that to seek a cutoff score is essential to classify test participants. It was unknown how taking a classifying approach might reveal the cutoff score for identifying mildly cognitively impaired older adults. METHODS: Participants, selected from 13 communities in Wuhan, China, were tested with the Chinese version of MoCA and rated with the Activities of Daily Living and the Clinical Dementia Rating scales. Mixture modeling was applied to the data with certain covariates and MoCA sum scores as the outcome of the latent class. Models with different numbers of classes were compared in terms of information criteria, likelihood ratio test, entropy, and interpretability. RESULTS: A 3-class model (normal, mildly impaired, and severely impaired) was found to fit the data best. The normal class averaged a MoCA score of 24, while the severely impaired class averaged a score below 18. For those cases with MoCA scores above 18 and below 24, it is not certain if they are in the normal or the severely impaired classes. CONCLUSION: Latent variable classification modeling provides another option to identify MCI in older adults. Some categorically different cases of MCI cannot be captured with any single MoCA sum score. A range of 18–24 MoCA scores might serve as a better screening criterion of MCI. Older adults who scored within this gray zone should be monitored for potential interventions.