Cargando…
Exploring Diagnostic Biomarkers and Comorbid Pathogenesis for Osteoarthritis and Metabolic Syndrome via Bioinformatics Approach
BACKGROUND: Metabolic syndrome (MS) has grown in recognition to contribute to the pathogenesis of osteoarthritis (OA), which is the most prevalent arthritis characterized by joint dysfunction. However, the specific mechanism between OA and MS remains unclear. METHODS: The gene expression profiles an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487858/ https://www.ncbi.nlm.nih.gov/pubmed/34616175 http://dx.doi.org/10.2147/IJGM.S325561 |
_version_ | 1784578044242952192 |
---|---|
author | Jiang, Xiang Zhong, Rongzhou Dai, Weifan Huang, Hui Yu, Qinyuan Zhang, Jiji Alexander Cai, Yanrong |
author_facet | Jiang, Xiang Zhong, Rongzhou Dai, Weifan Huang, Hui Yu, Qinyuan Zhang, Jiji Alexander Cai, Yanrong |
author_sort | Jiang, Xiang |
collection | PubMed |
description | BACKGROUND: Metabolic syndrome (MS) has grown in recognition to contribute to the pathogenesis of osteoarthritis (OA), which is the most prevalent arthritis characterized by joint dysfunction. However, the specific mechanism between OA and MS remains unclear. METHODS: The gene expression profiles and clinical information data of OA and MS were retrieved from the Gene Expression Omnibus (GEO) database. The genes in the key module of MS were identified by weighted gene co-expression network analysis (WGCNA), which intersected with the differentially expressed genes (DEGs) between control and MS samples to obtain hub genes for MS. The potential functions and pathways of hub genes were detected through the Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) analyses. The genes involved in the different KEGG pathways between the control and OA samples overlapped with the DEGs between the two groups via the Venn analysis to gain the hub genes for OA affected by MS (MOHGs). Additionally, the least absolute shrinkage and selection operator (LASSO) was performed on the MOHGs to establish a diagnostic model for each disease. RESULTS: A total of 61 hub genes for MS were identified that significantly enriched in platelet activation, complement and coagulation cascades, and hematopoietic cell lineage. Besides, 4 candidate genes (ELOVL7, F2RL3, GP9, and ITGA2B) were screened among the 6 MOHGs to construct a diagnostic model, showing good performance for distinguishing controls from patients with MS and OA. GSEA suggested that these diagnostic genes were closely associated with immune response, adipocytokine signaling, fatty acid metabolism, cell cycle, and platelet activation. CONCLUSION: Taken together, we identified 4 potential gene biomarkers for diagnosing MS and OA patients, providing a theoretical basis and reference for the diagnostics and treatment targets of MS and OA. |
format | Online Article Text |
id | pubmed-8487858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-84878582021-10-05 Exploring Diagnostic Biomarkers and Comorbid Pathogenesis for Osteoarthritis and Metabolic Syndrome via Bioinformatics Approach Jiang, Xiang Zhong, Rongzhou Dai, Weifan Huang, Hui Yu, Qinyuan Zhang, Jiji Alexander Cai, Yanrong Int J Gen Med Original Research BACKGROUND: Metabolic syndrome (MS) has grown in recognition to contribute to the pathogenesis of osteoarthritis (OA), which is the most prevalent arthritis characterized by joint dysfunction. However, the specific mechanism between OA and MS remains unclear. METHODS: The gene expression profiles and clinical information data of OA and MS were retrieved from the Gene Expression Omnibus (GEO) database. The genes in the key module of MS were identified by weighted gene co-expression network analysis (WGCNA), which intersected with the differentially expressed genes (DEGs) between control and MS samples to obtain hub genes for MS. The potential functions and pathways of hub genes were detected through the Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) analyses. The genes involved in the different KEGG pathways between the control and OA samples overlapped with the DEGs between the two groups via the Venn analysis to gain the hub genes for OA affected by MS (MOHGs). Additionally, the least absolute shrinkage and selection operator (LASSO) was performed on the MOHGs to establish a diagnostic model for each disease. RESULTS: A total of 61 hub genes for MS were identified that significantly enriched in platelet activation, complement and coagulation cascades, and hematopoietic cell lineage. Besides, 4 candidate genes (ELOVL7, F2RL3, GP9, and ITGA2B) were screened among the 6 MOHGs to construct a diagnostic model, showing good performance for distinguishing controls from patients with MS and OA. GSEA suggested that these diagnostic genes were closely associated with immune response, adipocytokine signaling, fatty acid metabolism, cell cycle, and platelet activation. CONCLUSION: Taken together, we identified 4 potential gene biomarkers for diagnosing MS and OA patients, providing a theoretical basis and reference for the diagnostics and treatment targets of MS and OA. Dove 2021-09-29 /pmc/articles/PMC8487858/ /pubmed/34616175 http://dx.doi.org/10.2147/IJGM.S325561 Text en © 2021 Jiang et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Jiang, Xiang Zhong, Rongzhou Dai, Weifan Huang, Hui Yu, Qinyuan Zhang, Jiji Alexander Cai, Yanrong Exploring Diagnostic Biomarkers and Comorbid Pathogenesis for Osteoarthritis and Metabolic Syndrome via Bioinformatics Approach |
title | Exploring Diagnostic Biomarkers and Comorbid Pathogenesis for Osteoarthritis and Metabolic Syndrome via Bioinformatics Approach |
title_full | Exploring Diagnostic Biomarkers and Comorbid Pathogenesis for Osteoarthritis and Metabolic Syndrome via Bioinformatics Approach |
title_fullStr | Exploring Diagnostic Biomarkers and Comorbid Pathogenesis for Osteoarthritis and Metabolic Syndrome via Bioinformatics Approach |
title_full_unstemmed | Exploring Diagnostic Biomarkers and Comorbid Pathogenesis for Osteoarthritis and Metabolic Syndrome via Bioinformatics Approach |
title_short | Exploring Diagnostic Biomarkers and Comorbid Pathogenesis for Osteoarthritis and Metabolic Syndrome via Bioinformatics Approach |
title_sort | exploring diagnostic biomarkers and comorbid pathogenesis for osteoarthritis and metabolic syndrome via bioinformatics approach |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487858/ https://www.ncbi.nlm.nih.gov/pubmed/34616175 http://dx.doi.org/10.2147/IJGM.S325561 |
work_keys_str_mv | AT jiangxiang exploringdiagnosticbiomarkersandcomorbidpathogenesisforosteoarthritisandmetabolicsyndromeviabioinformaticsapproach AT zhongrongzhou exploringdiagnosticbiomarkersandcomorbidpathogenesisforosteoarthritisandmetabolicsyndromeviabioinformaticsapproach AT daiweifan exploringdiagnosticbiomarkersandcomorbidpathogenesisforosteoarthritisandmetabolicsyndromeviabioinformaticsapproach AT huanghui exploringdiagnosticbiomarkersandcomorbidpathogenesisforosteoarthritisandmetabolicsyndromeviabioinformaticsapproach AT yuqinyuan exploringdiagnosticbiomarkersandcomorbidpathogenesisforosteoarthritisandmetabolicsyndromeviabioinformaticsapproach AT zhangjijialexander exploringdiagnosticbiomarkersandcomorbidpathogenesisforosteoarthritisandmetabolicsyndromeviabioinformaticsapproach AT caiyanrong exploringdiagnosticbiomarkersandcomorbidpathogenesisforosteoarthritisandmetabolicsyndromeviabioinformaticsapproach |