Cargando…
Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning
This paper presents a framework to alleviate the Deep Reinforcement Learning (DRL) training data sparsity problem that is present in challenging domains by creating a DRL agent training and vehicle integration methodology. The methodology leverages accessible domains to train an agent to solve navig...
Autores principales: | Lambert, Reeve, Li, Jianwen, Wu, Li-Fan, Mahmoudian, Nina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488128/ https://www.ncbi.nlm.nih.gov/pubmed/34616776 http://dx.doi.org/10.3389/frobt.2021.739023 |
Ejemplares similares
-
Comparing Deep Reinforcement Learning Algorithms’ Ability to Safely Navigate Challenging Waters
por: Larsen, Thomas Nakken, et al.
Publicado: (2021) -
Hybrid Collision Avoidance for ASVs Compliant With COLREGs Rules 8 and 13–17
por: Eriksen, Bjørn-Olav H., et al.
Publicado: (2020) -
Underwater Docking Approach and Homing to Enable Persistent Operation
por: Page, Brian R., et al.
Publicado: (2021) -
Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People
por: Lu, Chen-Lung, et al.
Publicado: (2021) -
Model-free reinforcement learning for robust locomotion using demonstrations from trajectory optimization
por: Bogdanovic, Miroslav, et al.
Publicado: (2022)