Cargando…
Accurate Prediction of Hydration Sites of Proteins Using Energy Model With Atom Embedding
We propose a method based on neural networks to accurately predict hydration sites in proteins. In our approach, high-quality data of protein structures are used to parametrize our neural network model, which is a differentiable score function that can evaluate an arbitrary position in 3D structures...
Autores principales: | Huang, Pin, Xing, Haoming, Zou, Xun, Han, Qi, Liu, Ke, Sun, Xiangyan, Wu, Junqiu, Fan, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488165/ https://www.ncbi.nlm.nih.gov/pubmed/34616774 http://dx.doi.org/10.3389/fmolb.2021.756075 |
Ejemplares similares
-
PASSer2.0: Accurate Prediction of Protein Allosteric Sites Through Automated Machine Learning
por: Xiao, Sian, et al.
Publicado: (2022) -
Thermal tuning of protein hydration in a hyperthermophilic enzyme
por: Fusco, Giuliana, et al.
Publicado: (2022) -
A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain
por: Panel, Nicolas, et al.
Publicado: (2017) -
SHAPER: A Web Server for Fast and Accurate SHAPE Reactivity Prediction
por: Zhou, Yuanzhe, et al.
Publicado: (2021) -
Accurate Biomolecular Simulations Account for Electronic Polarization
por: Melcr, Josef, et al.
Publicado: (2019)