Cargando…

miR-148a, miR-152 and miR-200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression

MicroRNAs (miRs) modulate the expression of target genes in the signal pathway on transcriptome level. The present study investigated the ‘epigenetic-based miRNA (epi-miRNA)-mRNA’ regulatory network of miR-34b, miR-34c, miR-148a, miR-152, miR-200a and miR-200b epi-miRNAs and their target genes, DNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Gurbuz, Venhar, Sozen, Sinan, Bilen, Cenk Y., Konac, Ece
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488332/
https://www.ncbi.nlm.nih.gov/pubmed/34630712
http://dx.doi.org/10.3892/ol.2021.13066
Descripción
Sumario:MicroRNAs (miRs) modulate the expression of target genes in the signal pathway on transcriptome level. The present study investigated the ‘epigenetic-based miRNA (epi-miRNA)-mRNA’ regulatory network of miR-34b, miR-34c, miR-148a, miR-152, miR-200a and miR-200b epi-miRNAs and their target genes, DNA methyltransferase (DNMT1, 3a and 3b), phosphate and tensin homolog (PTEN) and NK3 Homeobox 1 (NKX3.1), in prostate cancer (PCa) using reverse transcription-quantitative PCR. The expression level of NKX3.1 were not significantly different between the PCa, Met-PCa and control groups. However, in the PCa and Met-PCa groups, the expression level of DNMT1 was upregulated, while DNMT3a, DNMT3b and PTEN were downregulated. Overexpression of DNMT1 (~5 and ~6-fold increase in the PCa and Met-PCa groups respectively) was accompanied by a decreased expression in PTEN, indicating a potential negative association. Both groups indicated that a high level of DNMT1 is associated with the aggressiveness of cancer, and there is a a directly proportional relationship between this gene and PSA, GS and TNM staging. A significant ~2 to ~5-fold decrease in the expression levels of DNMT3a and DNMT3b was found in both groups. In the PCa group, significant associations were identified between miR-34b and DNMT1/DNMT3b; between miR-34c/miR-148a and all target genes; between miR-152 and DNMT1/DNMT3b and PTEN; and between miR-200a/b and DNMT1. In the Met-PCa group, miR-148a, miR-152 and miR-200b exhibited a significant association with all target genes. A significant negative association was identified between PTEN and DNMT1 in the Met-PCa group. It was also revealed that that miR-148a, miR-152 and miR-200b increased the expression of DNMT1 and suppressed PTEN. Furthermore, the ‘epi-miRNA-mRNA’ bidirectional feedback loop was emphasised and the methylation pattern in PCa anti-cancer therapeutics was highlighted.