Cargando…
Using ICLite for deconvolution of bulk transcriptional data from mixed cell populations
Bulk expression data from heterogeneous cell populations pose a challenge for investigators, as differences in cell numbers and transcriptional programs may complicate analysis. To improve the performance of bulk RNA sequencing on mixed populations, we created Immune Cell Linkage through Exploratory...
Autores principales: | Camiolo, Matthew J., Wenzel, Sally E., Ray, Anuradha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488363/ https://www.ncbi.nlm.nih.gov/pubmed/34632417 http://dx.doi.org/10.1016/j.xpro.2021.100847 |
Ejemplares similares
-
Expression of SARS-CoV-2 receptor ACE2 and coincident host response signature varies by asthma inflammatory phenotype
por: Camiolo, Matthew, et al.
Publicado: (2020) -
Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
por: Tanner, Georgette, et al.
Publicado: (2021) -
Likelihood-based deconvolution of bulk gene expression data using single-cell references
por: Erdmann-Pham, Dan D., et al.
Publicado: (2021) -
Computational deconvolution to estimate cell type-specific gene expression from bulk data
por: Jaakkola, Maria K, et al.
Publicado: (2021) -
CDSeqR: fast complete deconvolution for gene expression data from bulk tissues
por: Kang, Kai, et al.
Publicado: (2021)