Cargando…
Prediction of Protein–Protein Interactions in Arabidopsis, Maize, and Rice by Combining Deep Neural Network With Discrete Hilbert Transform
Protein–protein interactions (PPIs) in plants play an essential role in the regulation of biological processes. However, traditional experimental methods are expensive, time-consuming, and need sophisticated technical equipment. These drawbacks motivated the development of novel computational approa...
Autores principales: | Pan, Jie, Li, Li-Ping, You, Zhu-Hong, Yu, Chang-Qing, Ren, Zhong-Hao, Guan, Yong-Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488469/ https://www.ncbi.nlm.nih.gov/pubmed/34616437 http://dx.doi.org/10.3389/fgene.2021.745228 |
Ejemplares similares
-
A discrete Hilbert transform with circle packings
por: Volland, Dominik
Publicado: (2017) -
Sequence-Based Prediction of Plant Protein-Protein Interactions by Combining Discrete Sine Transformation With Rotation Forest
por: Pan, Jie, et al.
Publicado: (2021) -
Discrete Hilbert-Type Inequalities
por: Yang, Bicheng
Publicado: (2011) -
An Improved Deep Forest Model for Predicting Self-Interacting Proteins From Protein Sequence Using Wavelet Transformation
por: Chen, Zhan-Heng, et al.
Publicado: (2019) -
Hilbert transforms
por: King, Frederick W
Publicado: (2009)