Cargando…
Comparison of machine learning algorithms applied to symptoms to determine infectious causes of death in children: national survey of 18,000 verbal autopsies in the Million Death Study in India
BACKGROUND: Machine learning (ML) algorithms have been successfully employed for prediction of outcomes in clinical research. In this study, we have explored the application of ML-based algorithms to predict cause of death (CoD) from verbal autopsy records available through the Million Death Study (...
Autores principales: | Idicula-Thomas, Susan, Gawde, Ulka, Jha, Prabhat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488544/ https://www.ncbi.nlm.nih.gov/pubmed/34607591 http://dx.doi.org/10.1186/s12889-021-11829-y |
Ejemplares similares
-
Performance criteria for verbal autopsy-based systems to estimate national causes of death: development and application to the Indian Million Death Study
por: Aleksandrowicz, Lukasz, et al.
Publicado: (2014) -
Naive Bayes classifiers for verbal autopsies: comparison to physician-based classification for 21,000 child and adult deaths
por: Miasnikof, Pierre, et al.
Publicado: (2015) -
Automatically determining cause of death from verbal autopsy narratives
por: Jeblee, Serena, et al.
Publicado: (2019) -
Verbal autopsy of 80,000 adult deaths in Tamilnadu, South India
por: Gajalakshmi, Vendhan, et al.
Publicado: (2004) -
Performance of four computer-coded verbal autopsy methods for cause of death assignment compared with physician coding on 24,000 deaths in low- and middle-income countries
por: Desai, Nikita, et al.
Publicado: (2014)