Cargando…
The SUMO-specific protease SENP2 plays an essential role in the regulation of Kv7.2 and Kv7.3 potassium channels
Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2)-deficient mice develop spontaneous seizures in early life because of a marked reduction in M currents, which regulate neuronal membrane excitability. We have previously shown that hyper-SUMOylation of the Kv7.2 and Kv7.3 channe...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488601/ https://www.ncbi.nlm.nih.gov/pubmed/34509475 http://dx.doi.org/10.1016/j.jbc.2021.101183 |
_version_ | 1784578203026718720 |
---|---|
author | Chen, Xu Zhang, Yuhong Ren, Xiang Su, Qi Liu, Yan Dang, Xing Qin, Yuanyuan Yang, Xinyi Xing, Zhengcao Shen, Yajie Wang, Yaya Bai, Zhantao Yeh, Edward T.H. Wu, Hongmei Qi, Yitao |
author_facet | Chen, Xu Zhang, Yuhong Ren, Xiang Su, Qi Liu, Yan Dang, Xing Qin, Yuanyuan Yang, Xinyi Xing, Zhengcao Shen, Yajie Wang, Yaya Bai, Zhantao Yeh, Edward T.H. Wu, Hongmei Qi, Yitao |
author_sort | Chen, Xu |
collection | PubMed |
description | Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2)-deficient mice develop spontaneous seizures in early life because of a marked reduction in M currents, which regulate neuronal membrane excitability. We have previously shown that hyper-SUMOylation of the Kv7.2 and Kv7.3 channels is critically involved in the regulation of the M currents conducted by these potassium voltage-gated channels. Here, we show that hyper-SUMOylation of the Kv7.2 and Kv7.3 proteins reduced binding to the lipid secondary messenger PIP(2). CaM1 has been shown to be tethered to the Kv7 subunits via hydrophobic motifs in its C termini and implicated in the channel assembly. Mutation of the SUMOylation sites on Kv7.2 and Kv7.3 specifically resulted in decreased binding to CaM1 and enhanced CaM1-mediated assembly of Kv7.2 and Kv7.3, whereas hyper-SUMOylation of Kv7.2 and Kv7.3 inhibited channel assembly. SENP2-deficient mice exhibited increased acetylcholine levels in the brain and the heart tissue because of increases in the vagal tone induced by recurrent seizures. The SENP2-deficient mice develop seizures followed by a period of sinus pauses or atrioventricular conduction blocks. Chronic administration of the parasympathetic blocker atropine or unilateral vagotomy significantly prolonged the life of the SENP2-deficient mice. Furthermore, we showed that retigabine, an M-current opener, reduced the transcription of SUMO-activating enzyme SAE1 and inhibited SUMOylation of the Kv7.2 and Kv7.3 channels, and also prolonged the life of SENP2-deficient mice. Taken together, the previously demonstrated roles of PIP2, CaM1, and retigabine on the regulation of Kv7.2 and Kv7.3 channel function can be explained by their roles in regulating SUMOylation of this critical potassium channel. |
format | Online Article Text |
id | pubmed-8488601 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-84886012021-10-08 The SUMO-specific protease SENP2 plays an essential role in the regulation of Kv7.2 and Kv7.3 potassium channels Chen, Xu Zhang, Yuhong Ren, Xiang Su, Qi Liu, Yan Dang, Xing Qin, Yuanyuan Yang, Xinyi Xing, Zhengcao Shen, Yajie Wang, Yaya Bai, Zhantao Yeh, Edward T.H. Wu, Hongmei Qi, Yitao J Biol Chem Research Article Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2)-deficient mice develop spontaneous seizures in early life because of a marked reduction in M currents, which regulate neuronal membrane excitability. We have previously shown that hyper-SUMOylation of the Kv7.2 and Kv7.3 channels is critically involved in the regulation of the M currents conducted by these potassium voltage-gated channels. Here, we show that hyper-SUMOylation of the Kv7.2 and Kv7.3 proteins reduced binding to the lipid secondary messenger PIP(2). CaM1 has been shown to be tethered to the Kv7 subunits via hydrophobic motifs in its C termini and implicated in the channel assembly. Mutation of the SUMOylation sites on Kv7.2 and Kv7.3 specifically resulted in decreased binding to CaM1 and enhanced CaM1-mediated assembly of Kv7.2 and Kv7.3, whereas hyper-SUMOylation of Kv7.2 and Kv7.3 inhibited channel assembly. SENP2-deficient mice exhibited increased acetylcholine levels in the brain and the heart tissue because of increases in the vagal tone induced by recurrent seizures. The SENP2-deficient mice develop seizures followed by a period of sinus pauses or atrioventricular conduction blocks. Chronic administration of the parasympathetic blocker atropine or unilateral vagotomy significantly prolonged the life of the SENP2-deficient mice. Furthermore, we showed that retigabine, an M-current opener, reduced the transcription of SUMO-activating enzyme SAE1 and inhibited SUMOylation of the Kv7.2 and Kv7.3 channels, and also prolonged the life of SENP2-deficient mice. Taken together, the previously demonstrated roles of PIP2, CaM1, and retigabine on the regulation of Kv7.2 and Kv7.3 channel function can be explained by their roles in regulating SUMOylation of this critical potassium channel. American Society for Biochemistry and Molecular Biology 2021-09-10 /pmc/articles/PMC8488601/ /pubmed/34509475 http://dx.doi.org/10.1016/j.jbc.2021.101183 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Chen, Xu Zhang, Yuhong Ren, Xiang Su, Qi Liu, Yan Dang, Xing Qin, Yuanyuan Yang, Xinyi Xing, Zhengcao Shen, Yajie Wang, Yaya Bai, Zhantao Yeh, Edward T.H. Wu, Hongmei Qi, Yitao The SUMO-specific protease SENP2 plays an essential role in the regulation of Kv7.2 and Kv7.3 potassium channels |
title | The SUMO-specific protease SENP2 plays an essential role in the regulation of Kv7.2 and Kv7.3 potassium channels |
title_full | The SUMO-specific protease SENP2 plays an essential role in the regulation of Kv7.2 and Kv7.3 potassium channels |
title_fullStr | The SUMO-specific protease SENP2 plays an essential role in the regulation of Kv7.2 and Kv7.3 potassium channels |
title_full_unstemmed | The SUMO-specific protease SENP2 plays an essential role in the regulation of Kv7.2 and Kv7.3 potassium channels |
title_short | The SUMO-specific protease SENP2 plays an essential role in the regulation of Kv7.2 and Kv7.3 potassium channels |
title_sort | sumo-specific protease senp2 plays an essential role in the regulation of kv7.2 and kv7.3 potassium channels |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488601/ https://www.ncbi.nlm.nih.gov/pubmed/34509475 http://dx.doi.org/10.1016/j.jbc.2021.101183 |
work_keys_str_mv | AT chenxu thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT zhangyuhong thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT renxiang thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT suqi thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT liuyan thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT dangxing thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT qinyuanyuan thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT yangxinyi thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT xingzhengcao thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT shenyajie thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT wangyaya thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT baizhantao thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT yehedwardth thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT wuhongmei thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT qiyitao thesumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT chenxu sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT zhangyuhong sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT renxiang sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT suqi sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT liuyan sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT dangxing sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT qinyuanyuan sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT yangxinyi sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT xingzhengcao sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT shenyajie sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT wangyaya sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT baizhantao sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT yehedwardth sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT wuhongmei sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels AT qiyitao sumospecificproteasesenp2playsanessentialroleintheregulationofkv72andkv73potassiumchannels |