Cargando…
Deep learning identifies synergistic drug combinations for treating COVID-19
Effective treatments for COVID-19 are urgently needed. However, discovering single-agent therapies with activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been challenging. Combination therapies play an important role in antiviral therapies, due to their improved effic...
Autores principales: | Jin, Wengong, Stokes, Jonathan M., Eastman, Richard T., Itkin, Zina, Zakharov, Alexey V., Collins, James J., Jaakkola, Tommi S., Barzilay, Regina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488647/ https://www.ncbi.nlm.nih.gov/pubmed/34526388 http://dx.doi.org/10.1073/pnas.2105070118 |
Ejemplares similares
-
Synergistic and Antagonistic Drug Combinations against SARS-CoV-2
por: Bobrowski, Tesia, et al.
Publicado: (2021) -
Discovery of Synergistic and Antagonistic Drug Combinations against SARS-CoV-2 In Vitro
por: Bobrowski, Tesia, et al.
Publicado: (2020) -
Prediction of Organic Reaction Outcomes Using Machine
Learning
por: Coley, Connor W., et al.
Publicado: (2017) -
A graph-convolutional neural network model for the prediction of chemical reactivity
por: Coley, Connor W., et al.
Publicado: (2018) -
Analyzing Learned Molecular Representations for Property
Prediction
por: Yang, Kevin, et al.
Publicado: (2019)