Cargando…
On the robustness of generalization of drug–drug interaction models
BACKGROUND: Deep learning methods are a proven commodity in many fields and endeavors. One of these endeavors is predicting the presence of adverse drug–drug interactions (DDIs). The models generated can predict, with reasonable accuracy, the phenotypes arising from the drug interactions using their...
Autores principales: | Kpanou, Rogia, Osseni, Mazid Abiodoun, Tossou, Prudencio, Laviolette, Francois, Corbeil, Jacques |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489092/ https://www.ncbi.nlm.nih.gov/pubmed/34607569 http://dx.doi.org/10.1186/s12859-021-04398-9 |
Ejemplares similares
-
Machine learning analysis identifies genes differentiating triple negative breast cancers
por: Kothari, Charu, et al.
Publicado: (2020) -
Are Machine Learning Algorithms More Accurate in Predicting Vegetable and Fruit Consumption Than Traditional Statistical Models? An Exploratory Analysis
por: Côté, Mélina, et al.
Publicado: (2022) -
Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery
por: Giguère, Sébastien, et al.
Publicado: (2015) -
Culture-enriched human gut microbiomes reveal core and accessory resistance genes
por: Raymond, Frédéric, et al.
Publicado: (2019) -
Functional Divergence and Evolutionary Turnover in Mammalian Phosphoproteomes
por: Freschi, Luca, et al.
Publicado: (2014)