Cargando…
Tracking cancer lesions on surgical samples of gastric cancer by artificial intelligent algorithms
To quickly locate cancer lesions, especially suspected metastatic lesions after gastrectomy, AI algorithms of object detection and semantic segmentation were established. A total of 509 macroscopic images from 381 patients were collected. The RFB-SSD object detection algorithm and ResNet50-PSPNet se...
Autores principales: | Yang, Ruixin, Yan, Chao, Lu, Sheng, Li, Jun, Ji, Jun, Yan, Ranlin, Yuan, Fei, Zhu, Zhenggang, Yu, Yingyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489126/ https://www.ncbi.nlm.nih.gov/pubmed/34659538 http://dx.doi.org/10.7150/jca.63879 |
Ejemplares similares
-
A quick and reliable image-based AI algorithm for evaluating cellular senescence of gastric organoids
por: Yang, Ruixin, et al.
Publicado: (2023) -
Genetic Profiles Affect the Biological Effects of Serine on Gastric Cancer Cells
por: Li, Jun, et al.
Publicado: (2020) -
Cross-Database Analysis Reveals Sensitive Biomarkers for Combined Therapy for ERBB2+ Gastric Cancer
por: Xiang, Zhen, et al.
Publicado: (2018) -
Artificial Intelligence-Based Multiclass Classification of Benign or Malignant Mucosal Lesions of the Stomach
por: Ma, Bowei, et al.
Publicado: (2020) -
A positive feedback between IDO1 metabolite and COL12A1 via MAPK pathway to promote gastric cancer metastasis
por: Xiang, Zhen, et al.
Publicado: (2019)