Cargando…
A scalable software solution for anonymizing high-dimensional biomedical data
BACKGROUND: Data anonymization is an important building block for ensuring privacy and fosters the reuse of data. However, transforming the data in a way that preserves the privacy of subjects while maintaining a high degree of data quality is challenging and particularly difficult when processing c...
Autores principales: | Meurers, Thierry, Bild, Raffael, Do, Kieu-Mi, Prasser, Fabian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489190/ https://www.ncbi.nlm.nih.gov/pubmed/34605868 http://dx.doi.org/10.1093/gigascience/giab068 |
Ejemplares similares
-
Design and evaluation of a data anonymization pipeline to promote Open Science on COVID-19
por: Jakob, Carolin E. M., et al.
Publicado: (2020) -
Scalable analysis of multi-modal biomedical data
por: Smith, Jaclyn, et al.
Publicado: (2021) -
Fractalis: a scalable open-source service for platform-independent interactive visual analysis of biomedical data
por: Herzinger, Sascha, et al.
Publicado: (2018) -
A comprehensive tool for creating and evaluating privacy-preserving biomedical prediction models
por: Eicher, Johanna, et al.
Publicado: (2020) -
Data Provenance in Biomedical Research: Scoping Review
por: Johns, Marco, et al.
Publicado: (2023)