Cargando…

“SARS-CoV-2 is transmitted by particulate air pollution”: Misinterpretations of statistical data, skewed citation practices, and misuse of specific terminology spreading the misconception()

In epidemiology, there are still outdated myths associated with the spread of respiratory infections. Recently, we have witnessed the origination of a new misconception, to the effect that SARS-CoV-2 is transmitted in the open air by way of particulate air pollution (atmospheric particulate matter (...

Descripción completa

Detalles Bibliográficos
Autor principal: Ishmatov, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489301/
https://www.ncbi.nlm.nih.gov/pubmed/34562486
http://dx.doi.org/10.1016/j.envres.2021.112116
Descripción
Sumario:In epidemiology, there are still outdated myths associated with the spread of respiratory infections. Recently, we have witnessed the origination of a new misconception, to the effect that SARS-CoV-2 is transmitted in the open air by way of particulate air pollution (atmospheric particulate matter (PM)). There is no evidence to support the idea behind this misconception. Nevertheless, more and more people are involved in animated debate and the number of studies concerning atmospheric PM as a carrier of SARS-CoV-2 is growing rapidly. In this work, the origin of the misconception was investigated, and the published papers which have contributed to the spread of this myth were analyzed. The results show that the following factors lie behind the origin and spread of the misconception: a) The specific terminology is not always clearly defined or consistently used by scientists. In particular, the terms ‘particulate matter’, ‘atmospheric aerosol particles’, ‘air pollutants’, and ‘atmospheric aerosols’ need to be clarified, and besides they are often equated to ‘infectious aerosols’, ‘virus-bearing aerosols’, ‘bio-aerosols’, ‘virus-laden particles’, ‘respiratory aerosol/droplets’, and ‘droplet nuclei’. b) Authors misinterpret statistical data and information from other sources. Interpretation of the correlation between PM levels and the increasing incidence and severity of COVID-19 infection, is often changed from “PM may reflect the indirect action of certain atmospheric conditions that maintain infectious nuclei suspended for prolonged periods, parameters that also act on atmospheric pollutants” to “PM could cause an increase in infectious droplets/aerosols containing SARS-CoV-2.” This is a dramatic change to the meaning. Moreover, it is often not taken into account that PM may reflect activities in areas with high population density and this population density at the same time contributes to the spread COVID-19. c) Skewed citation practices. Many authors cite a hypothetical conclusion from an original study, then other authors cite the papers of these authors as primary sources. This practice leads to the effect that there are many witnesses to a ‘phenomenon’ that did not ever occur. Thus, the terminology used in interdisciplinary communications should be more nuanced and defined precisely. Authors should be more careful when citing unconfirmed data (and hypotheses) as well as in interpreting statistical data so as to avoid confusion and spreading false information. This is especially important now in the era of the COVID-19 pandemic.