Cargando…
Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3)
Perovskite-inspired materials aim to replicate the optoelectronic performance of lead-halide perovskites, while eliminating issues with stability and toxicity. Chalcohalides of group IV/V elements have attracted attention due to enhanced stability provided by stronger metal-chalcogen bonds, alongsid...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489399/ https://www.ncbi.nlm.nih.gov/pubmed/34617541 http://dx.doi.org/10.1039/d1mh00764e |
_version_ | 1784578335569870848 |
---|---|
author | Kavanagh, Seán R. Savory, Christopher N. Scanlon, David O. Walsh, Aron |
author_facet | Kavanagh, Seán R. Savory, Christopher N. Scanlon, David O. Walsh, Aron |
author_sort | Kavanagh, Seán R. |
collection | PubMed |
description | Perovskite-inspired materials aim to replicate the optoelectronic performance of lead-halide perovskites, while eliminating issues with stability and toxicity. Chalcohalides of group IV/V elements have attracted attention due to enhanced stability provided by stronger metal-chalcogen bonds, alongside compositional flexibility and ns(2) lone pair cations – a performance-defining feature of halide perovskites. Following the experimental report of solution-grown tin-antimony sulfoiodide (Sn(2)SbS(2)I(3)) solar cells, with power conversion efficiencies above 4%, we assess the structural and electronic properties of this emerging photovoltaic material. We find that the reported centrosymmetric Cmcm crystal structure represents an average over multiple polar Cmc2(1) configurations. The instability is confirmed through a combination of lattice dynamics and molecular dynamics simulations. We predict a large spontaneous polarisation of 37 μC cm(−2) that could be active for electron–hole separation in operating solar cells. We further assess the radiative efficiency limit of this material, calculating η(max) > 30% for film thicknesses t > 0.5 μm. |
format | Online Article Text |
id | pubmed-8489399 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-84893992021-10-25 Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3) Kavanagh, Seán R. Savory, Christopher N. Scanlon, David O. Walsh, Aron Mater Horiz Chemistry Perovskite-inspired materials aim to replicate the optoelectronic performance of lead-halide perovskites, while eliminating issues with stability and toxicity. Chalcohalides of group IV/V elements have attracted attention due to enhanced stability provided by stronger metal-chalcogen bonds, alongside compositional flexibility and ns(2) lone pair cations – a performance-defining feature of halide perovskites. Following the experimental report of solution-grown tin-antimony sulfoiodide (Sn(2)SbS(2)I(3)) solar cells, with power conversion efficiencies above 4%, we assess the structural and electronic properties of this emerging photovoltaic material. We find that the reported centrosymmetric Cmcm crystal structure represents an average over multiple polar Cmc2(1) configurations. The instability is confirmed through a combination of lattice dynamics and molecular dynamics simulations. We predict a large spontaneous polarisation of 37 μC cm(−2) that could be active for electron–hole separation in operating solar cells. We further assess the radiative efficiency limit of this material, calculating η(max) > 30% for film thicknesses t > 0.5 μm. The Royal Society of Chemistry 2021-07-05 /pmc/articles/PMC8489399/ /pubmed/34617541 http://dx.doi.org/10.1039/d1mh00764e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Kavanagh, Seán R. Savory, Christopher N. Scanlon, David O. Walsh, Aron Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3) |
title | Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3) |
title_full | Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3) |
title_fullStr | Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3) |
title_full_unstemmed | Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3) |
title_short | Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3) |
title_sort | hidden spontaneous polarisation in the chalcohalide photovoltaic absorber sn(2)sbs(2)i(3) |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489399/ https://www.ncbi.nlm.nih.gov/pubmed/34617541 http://dx.doi.org/10.1039/d1mh00764e |
work_keys_str_mv | AT kavanaghseanr hiddenspontaneouspolarisationinthechalcohalidephotovoltaicabsorbersn2sbs2i3 AT savorychristophern hiddenspontaneouspolarisationinthechalcohalidephotovoltaicabsorbersn2sbs2i3 AT scanlondavido hiddenspontaneouspolarisationinthechalcohalidephotovoltaicabsorbersn2sbs2i3 AT walsharon hiddenspontaneouspolarisationinthechalcohalidephotovoltaicabsorbersn2sbs2i3 |