Cargando…

Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3)

Perovskite-inspired materials aim to replicate the optoelectronic performance of lead-halide perovskites, while eliminating issues with stability and toxicity. Chalcohalides of group IV/V elements have attracted attention due to enhanced stability provided by stronger metal-chalcogen bonds, alongsid...

Descripción completa

Detalles Bibliográficos
Autores principales: Kavanagh, Seán R., Savory, Christopher N., Scanlon, David O., Walsh, Aron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489399/
https://www.ncbi.nlm.nih.gov/pubmed/34617541
http://dx.doi.org/10.1039/d1mh00764e
_version_ 1784578335569870848
author Kavanagh, Seán R.
Savory, Christopher N.
Scanlon, David O.
Walsh, Aron
author_facet Kavanagh, Seán R.
Savory, Christopher N.
Scanlon, David O.
Walsh, Aron
author_sort Kavanagh, Seán R.
collection PubMed
description Perovskite-inspired materials aim to replicate the optoelectronic performance of lead-halide perovskites, while eliminating issues with stability and toxicity. Chalcohalides of group IV/V elements have attracted attention due to enhanced stability provided by stronger metal-chalcogen bonds, alongside compositional flexibility and ns(2) lone pair cations – a performance-defining feature of halide perovskites. Following the experimental report of solution-grown tin-antimony sulfoiodide (Sn(2)SbS(2)I(3)) solar cells, with power conversion efficiencies above 4%, we assess the structural and electronic properties of this emerging photovoltaic material. We find that the reported centrosymmetric Cmcm crystal structure represents an average over multiple polar Cmc2(1) configurations. The instability is confirmed through a combination of lattice dynamics and molecular dynamics simulations. We predict a large spontaneous polarisation of 37 μC cm(−2) that could be active for electron–hole separation in operating solar cells. We further assess the radiative efficiency limit of this material, calculating η(max) > 30% for film thicknesses t > 0.5 μm.
format Online
Article
Text
id pubmed-8489399
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-84893992021-10-25 Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3) Kavanagh, Seán R. Savory, Christopher N. Scanlon, David O. Walsh, Aron Mater Horiz Chemistry Perovskite-inspired materials aim to replicate the optoelectronic performance of lead-halide perovskites, while eliminating issues with stability and toxicity. Chalcohalides of group IV/V elements have attracted attention due to enhanced stability provided by stronger metal-chalcogen bonds, alongside compositional flexibility and ns(2) lone pair cations – a performance-defining feature of halide perovskites. Following the experimental report of solution-grown tin-antimony sulfoiodide (Sn(2)SbS(2)I(3)) solar cells, with power conversion efficiencies above 4%, we assess the structural and electronic properties of this emerging photovoltaic material. We find that the reported centrosymmetric Cmcm crystal structure represents an average over multiple polar Cmc2(1) configurations. The instability is confirmed through a combination of lattice dynamics and molecular dynamics simulations. We predict a large spontaneous polarisation of 37 μC cm(−2) that could be active for electron–hole separation in operating solar cells. We further assess the radiative efficiency limit of this material, calculating η(max) > 30% for film thicknesses t > 0.5 μm. The Royal Society of Chemistry 2021-07-05 /pmc/articles/PMC8489399/ /pubmed/34617541 http://dx.doi.org/10.1039/d1mh00764e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Kavanagh, Seán R.
Savory, Christopher N.
Scanlon, David O.
Walsh, Aron
Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3)
title Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3)
title_full Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3)
title_fullStr Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3)
title_full_unstemmed Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3)
title_short Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn(2)SbS(2)I(3)
title_sort hidden spontaneous polarisation in the chalcohalide photovoltaic absorber sn(2)sbs(2)i(3)
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489399/
https://www.ncbi.nlm.nih.gov/pubmed/34617541
http://dx.doi.org/10.1039/d1mh00764e
work_keys_str_mv AT kavanaghseanr hiddenspontaneouspolarisationinthechalcohalidephotovoltaicabsorbersn2sbs2i3
AT savorychristophern hiddenspontaneouspolarisationinthechalcohalidephotovoltaicabsorbersn2sbs2i3
AT scanlondavido hiddenspontaneouspolarisationinthechalcohalidephotovoltaicabsorbersn2sbs2i3
AT walsharon hiddenspontaneouspolarisationinthechalcohalidephotovoltaicabsorbersn2sbs2i3