Cargando…

Obesity, POMC, and POMC-processing Enzymes: Surprising Results From Animal Models

Peptides derived from proopiomelanocortin (POMC) are well-established neuropeptides and peptide hormones that perform multiple functions, including regulation of body weight. In humans and some animals, these peptides include α– and β–melanocyte-stimulating hormone (MSH). In certain rodent species,...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindberg, Iris, Fricker, Lloyd D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489426/
https://www.ncbi.nlm.nih.gov/pubmed/34333593
http://dx.doi.org/10.1210/endocr/bqab155
Descripción
Sumario:Peptides derived from proopiomelanocortin (POMC) are well-established neuropeptides and peptide hormones that perform multiple functions, including regulation of body weight. In humans and some animals, these peptides include α– and β–melanocyte-stimulating hormone (MSH). In certain rodent species, no β-MSH is produced from POMC because of a change in the cleavage site. Enzymes that convert POMC into MSH include prohormone convertases (PCs), carboxypeptidases (CPs), and peptidyl-α-amidating monooxygenase (PAM). Humans and mice with inactivating mutations in either PC1/3 or carboxypeptidase E (CPE) are obese, which was assumed to result from defective processing of POMC into MSH. However, recent studies have shown that selective loss of either PC1/3 or CPE in POMC-expressing cells does not cause obesity. These findings suggest that defects in POMC processing cannot alone account for the obesity observed in global PC1/3 or CPE mutants. We propose that obesity in animals lacking PC1/3 or CPE activity depends, at least in part, on deficient processing of peptides in non–POMC-expressing cells either in the brain and/or the periphery. Genetic background may also contribute to the manifestation of obesity.