Cargando…

Effects of solute size and tissue composition on molecular and macromolecular diffusivity in human knee cartilage

OBJECTIVE: Articular cartilage is an avascular tissue. Accordingly, diffusivity represents a fundamental transport mechanism for nutrients and other molecular signals regulating its cell metabolism and maintenance of the extracellular matrix. Understanding how solutes spread into articular cartilage...

Descripción completa

Detalles Bibliográficos
Autores principales: Travascio, Francesco, Valladares-Prieto, Sabrina, Jackson, Alicia R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489571/
https://www.ncbi.nlm.nih.gov/pubmed/34611626
http://dx.doi.org/10.1016/j.ocarto.2020.100087
_version_ 1784578364827238400
author Travascio, Francesco
Valladares-Prieto, Sabrina
Jackson, Alicia R.
author_facet Travascio, Francesco
Valladares-Prieto, Sabrina
Jackson, Alicia R.
author_sort Travascio, Francesco
collection PubMed
description OBJECTIVE: Articular cartilage is an avascular tissue. Accordingly, diffusivity represents a fundamental transport mechanism for nutrients and other molecular signals regulating its cell metabolism and maintenance of the extracellular matrix. Understanding how solutes spread into articular cartilage is crucial to elucidating its pathologies, and to designing treatments for repair and restoration of its extracellular matrix. As in other connective tissues, diffusivity in articular cartilage may vary depending both its composition and the specific diffusing solute. Hence, this study investigated the roles of solute size and tissue composition on molecular diffusion in knee articular cartilage. DESIGN: FRAP tests were conducted to measure diffusivity of five molecular probes, with size ranging from ~332Da to 70,000Da, in human knee articular cartilage. The measured diffusion coefficients were related to molecular size, as well as water and glycosaminoglycan (GAG) content of femoral and tibial condyle cartilage. RESULTS: Diffusivity was affected by molecular size, with the magnitude of the diffusion coefficients decreasing as the Stokes radius of the probe increased. The values of diffusion coefficients in tibial and femoral samples were not significantly different from one another, despite the fact that tibial samples exhibited significantly higher water content and lower GAG content of the femoral specimens. Water content did not affect diffusivity. In contrast, diffusivities of large molecules were sensitive to GAG content. CONCLUSIONS: This study provides new knowledge on the mechanisms of diffusion in articular cartilage. Our findings can be leveraged to further investigate osteoarthritis and to design treatments for cartilage restoration or replacement.
format Online
Article
Text
id pubmed-8489571
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-84895712021-10-04 Effects of solute size and tissue composition on molecular and macromolecular diffusivity in human knee cartilage Travascio, Francesco Valladares-Prieto, Sabrina Jackson, Alicia R. Osteoarthr Cartil Open ORIGINAL PAPER OBJECTIVE: Articular cartilage is an avascular tissue. Accordingly, diffusivity represents a fundamental transport mechanism for nutrients and other molecular signals regulating its cell metabolism and maintenance of the extracellular matrix. Understanding how solutes spread into articular cartilage is crucial to elucidating its pathologies, and to designing treatments for repair and restoration of its extracellular matrix. As in other connective tissues, diffusivity in articular cartilage may vary depending both its composition and the specific diffusing solute. Hence, this study investigated the roles of solute size and tissue composition on molecular diffusion in knee articular cartilage. DESIGN: FRAP tests were conducted to measure diffusivity of five molecular probes, with size ranging from ~332Da to 70,000Da, in human knee articular cartilage. The measured diffusion coefficients were related to molecular size, as well as water and glycosaminoglycan (GAG) content of femoral and tibial condyle cartilage. RESULTS: Diffusivity was affected by molecular size, with the magnitude of the diffusion coefficients decreasing as the Stokes radius of the probe increased. The values of diffusion coefficients in tibial and femoral samples were not significantly different from one another, despite the fact that tibial samples exhibited significantly higher water content and lower GAG content of the femoral specimens. Water content did not affect diffusivity. In contrast, diffusivities of large molecules were sensitive to GAG content. CONCLUSIONS: This study provides new knowledge on the mechanisms of diffusion in articular cartilage. Our findings can be leveraged to further investigate osteoarthritis and to design treatments for cartilage restoration or replacement. Elsevier 2020-07-24 /pmc/articles/PMC8489571/ /pubmed/34611626 http://dx.doi.org/10.1016/j.ocarto.2020.100087 Text en © 2020 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle ORIGINAL PAPER
Travascio, Francesco
Valladares-Prieto, Sabrina
Jackson, Alicia R.
Effects of solute size and tissue composition on molecular and macromolecular diffusivity in human knee cartilage
title Effects of solute size and tissue composition on molecular and macromolecular diffusivity in human knee cartilage
title_full Effects of solute size and tissue composition on molecular and macromolecular diffusivity in human knee cartilage
title_fullStr Effects of solute size and tissue composition on molecular and macromolecular diffusivity in human knee cartilage
title_full_unstemmed Effects of solute size and tissue composition on molecular and macromolecular diffusivity in human knee cartilage
title_short Effects of solute size and tissue composition on molecular and macromolecular diffusivity in human knee cartilage
title_sort effects of solute size and tissue composition on molecular and macromolecular diffusivity in human knee cartilage
topic ORIGINAL PAPER
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489571/
https://www.ncbi.nlm.nih.gov/pubmed/34611626
http://dx.doi.org/10.1016/j.ocarto.2020.100087
work_keys_str_mv AT travasciofrancesco effectsofsolutesizeandtissuecompositiononmolecularandmacromoleculardiffusivityinhumankneecartilage
AT valladaresprietosabrina effectsofsolutesizeandtissuecompositiononmolecularandmacromoleculardiffusivityinhumankneecartilage
AT jacksonaliciar effectsofsolutesizeandtissuecompositiononmolecularandmacromoleculardiffusivityinhumankneecartilage