Cargando…
DeepT3 2.0: improving type III secreted effector predictions by an integrative deep learning framework
Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines that allow a number of humans, plant and animal pathogens to inject virulence factors directly into the cytoplasm of eukaryotic cells. Export of effectors through T3SSs is critical for motility and virulence of most Gram...
Autores principales: | Jing, Runyu, Wen, Tingke, Liao, Chengxiang, Xue, Li, Liu, Fengjuan, Yu, Lezheng, Luo, Jiesi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489581/ https://www.ncbi.nlm.nih.gov/pubmed/34617013 http://dx.doi.org/10.1093/nargab/lqab086 |
Ejemplares similares
-
DeepT3_4: A Hybrid Deep Neural Network Model for the Distinction Between Bacterial Type III and IV Secreted Effectors
por: Yu, Lezheng, et al.
Publicado: (2021) -
EnsembleDL-ATG: Identifying autophagy proteins by integrating their sequence and evolutionary information using an ensemble deep learning framework
por: Yu, Lezheng, et al.
Publicado: (2023) -
DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm
por: Yu, Lezheng, et al.
Publicado: (2020) -
The applications of deep learning algorithms on in silico druggable proteins identification
por: Yu, Lezheng, et al.
Publicado: (2022) -
Evaluation and development of deep neural networks for RNA 5-Methyluridine classifications using autoBioSeqpy
por: Yu, Lezheng, et al.
Publicado: (2023)