Cargando…

Analysis and correction of meteorological disturbance observed by ground radars in complex environment

Ground radar interferometry technology, as a new tool for active remote sensing, has been widely used in the detection of a variety of targets, including landslides, bridges, mines, and dams. This technique usually employs a continuous observation mode with no space baseline. The detection accuracy...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jijun, Zhou, Xiao, Yu, Songlin, Li, Bingzhen, Li, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489706/
https://www.ncbi.nlm.nih.gov/pubmed/34606506
http://dx.doi.org/10.1371/journal.pone.0258168
Descripción
Sumario:Ground radar interferometry technology, as a new tool for active remote sensing, has been widely used in the detection of a variety of targets, including landslides, bridges, mines, and dams. This technique usually employs a continuous observation mode with no space baseline. The detection accuracy is mainly affected by meteorological disturbances and noise in the observation environment. In a complex observation environment, meteorological disturbances can lead to phase errors of 10 mm or more, and the effects are different in the range and azimuth directions; this can seriously affect the accuracy of the measurement. In this paper, we analyze the spatial distribution of the phase of meteorological disturbances based on radar monitoring experiments in a complex environment, and propose a correction method that reduces the atmospheric disturbance phase to less than 0.6 mm and effectively improves radar observation accuracy.